Под знаком кванта. - Леонид Иванович Пономарёв
Шрифт:
Интервал:
Закладка:
Мы живем в удивительное время: прошло всего полвека с тех пор, как стал известен наш адрес на окраине Галактики. На наших глазах происходит самая большая революция в астрономии со времен Коперника и Галилея, и постепенно пришедшая ей на смену астрофизика может изменить самосознание человека даже больше, чем открытие атомной энергии.
ВОКРУГ КВАНТА
Солнце, жизнь и хлорофилл
«Солнце, жизнь и хлорофилл» — так назвал свою книгу Климент Аркадьевич Тимирязев (1843—1920), однажды восхищенный чудом фотосинтеза и отдавший его изучению более полувека. «Едва ли какой процесс, совершающийся на поверхности Земли, заслуживает в такой степени всеобщего внимания, как тот далеко еще не разгаданный процесс, который происходит в зеленом листе, когда на него падает луч Солнца...» — писал он в одной из своих статей.
Чем питаются растения? Зачем дереву листья? И почему они зеленые? — эти и подобные им «детские вопросы» задавали уже в древности. Ответить на них смогли только в прошлом веке, когда трудами фламандского врача Яна Баптиста Бельмонта (1579—1644), английского ботаника Стивена Гейлса (1677—1761), английского химика Джозефа Пристли (1733—1804), голландского врача Яна Ингенхауза (1730— 1799), швейцарских естествоиспытателей Жана Сенебье (1742—1809) и Никола Теодора Соссюра (1767—1845) было установлено, что под лучами Солнца в зеленых листьях растений происходит превращение углекислого газа и воды в сахар, крахмал и древесину, которое сопровождается выделением кислорода.
Человек и весь животный мир планеты во всех отношениях зависит от этого процесса: мы дышим кислородом воздуха, едим хлеб, испеченный из злаков, пьем молоко, принесенное с пастбищ. Но точно так же, как мы не замечаем воздуха, которым дышим, мы редко задумываемся о космической роли растений: это единственные организмы на Земле, способные улавливать энергию солнечного излучения и превращать ее в химическую энергию органических соединений, необходимых для поддержания жизни животных и человека.
В прошлые века этому удивлялись больше: «Я вижу, как моя кровь образуется в хлебном колосе... а древесина отдает зимою теплоту, огонь и свет, похищенные ею у Солнца»,— писал Сенебье в 1791 г. А Юлиус Роберт Майер (1814— 1878) в 1845 г. продолжал: «Природа поставила себе задачей перехватить на лету притекающий на Землю свет и превратить эту подвижнейшую из сил в твердую форму».
В 1817 г. парижские аптекари Пьер Жозеф Пельтье (1788—1842) и Жозеф Бьенеме Каванту (1795—1877) выделили из листьев некое вещество, «зеленую кровь растений», и назвали его хлорофиллом. Впервые зеленые пузырьки этого вещества наблюдал изобретатель микроскопа Антони ван Левенгук (1632—1723) еще в конце XVII века, но лишь в середине XIX века стало понятно, что именно хлорофилл — основное звено в сложной цепи превращений воды и углекислого газа в крахмал.
В 1906 г. изобретатель хроматографии русский ботаник Михаил Семенович Цвет (1872—1919) обнаружил, что существует не один хлорофилл, а по крайней мере два. В 1913 г. немецкий биохимик Рихард Вильштеттер (1872— 1942) установил их химический состав: голубовато-зеленый хлорофилл а состоит из 137 атомов (С55 H72N4O5Mg), а желтовато-зеленый хлорофилл b — из 136 атомов (С55 H70N4O6Mg).
Но только в 1940 г. Хансу Фишеру (1881 — 1945) удалось установить структуру хлорофилла, то есть последовательность, в которой его атомы соединены между собой. Оказалось, что эта структура очень близка к структуре гема — основной части гемоглобина крови всех животных. Только вместо атома железа, из-за которого гемоглобин окрашен в красный цвет, в центре молекулы хлорофилла помещен атом магния, сообщающий ему зеленый цвет. (Таким образом, метафора «зеленая кровь растений» неожиданно оказалась строгим научным утверждением. Не случайно также, что именно Ханс Фишер в 1929 г. расшифровал структуру гема и был удостоен за это Нобелевской премии 1930 г.)
Прошло еще 20 лет, и в 1960 г. американский биохимик Роберт Вудворд (р. 1917 г.) синтезировал хлорофилл. (Он же в 1962 г. синтезировал тетрациклин, Нобелевская премия 1965 г.) Но даже после этих успехов не все детали фотосинтеза поняты до конца, хотя общие контуры этого сложного явления установлены теперь довольно надежно — и наука о квантах немало этому содействовала.
Химическая суть процесса фотосинтеза предельно проста: молекула воды (Н2О) соединяется с молекулой углекислого газа (СО2), освобождая при этом молекулу кислорода (О2) и образуя «строительный блок» СН2О многих органических соединений (например, глюкоза С6Н12О6 или (СН2О)6 составлена из 6 таких блоков), то есть
СО2 + Н2О → СН2О + О2.
Такая перестройка атомов требует энергии: на возбуждение молекул Н2О и СО2, на разрыв связей между водородом и кислородом в молекуле воды, на отрыв атома кислорода от молекулы СО2, который затем объединяется в молекулу О2 с атомом кислорода из молекулы Н2О. Эту энергию зеленый лист черпает из потока квантов солнечного света.
Каждая химическая связь образуется парой электронов, поэтому при разрыве двух связей водород — кислород и образовании двух новых связей водород — углерод необходимо переместить 4 электрона. Опыт показывает, что для этого необходимо самое меньшее 8 квантов красного цвета, то есть по 2 кванта на каждый электрон. Поэтому истинное уравнение фотосинтеза имеет вид
СО2 + Н2О + 8hν→СН2О + О2.
Энергия красного кванта с длиной волны около 700 нм равна 1,8 эВ, а суммарная энергия 8 квантов 14,4 эВ. Одна треть этой энергии (около 5 эВ) запасается в виде энергии химических связей в молекулах глюкозы.
Когда мы пьем чай, то молекулы кислорода, захваченные гемоглобином, в присутствии ферментов соединяются с молекулами глюкозы в обратном процессе
СН2О+О2→Н2О + СО2,
освобождая при этом энергию солнечного луча, запасенную хлорофиллом, которая, в конечном итоге, и сохраняет нашу жизнь. (Как говорил Герман Гельмгольц, зная это, каждый из нас «вправе наравне с самим китайским императором величать себя сыном Солнца».)
Простота уравнения фотосинтеза не должна нас обманывать: это не просто реакция, а сложный биохимический процесс, включающий в себя несколько стадий и десятки разнообразных реакций.
В листьях молекулы хлорофилла (их размер 10 Å = 10-7 см) упакованы в специальные структуры — хлоропласты, представляющие собой чешуйки диаметром 10-3 см и толщиной 10