Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Психология » Психология критического мышления - Дайана Халперн

Психология критического мышления - Дайана Халперн

Читать онлайн Психология критического мышления - Дайана Халперн
1 ... 94 95 96 97 98 99 100 101 102 ... 149
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Можете ли вы предложить способ определения объективной вероятности успеха? Чтобы найти объективную вероятность, вам потребуется знать еще одно число, про которое часто забывают, — процент тех, кто терпит неудачу, несмотря на то, что обладает характеристиками, связанными с успехом (в данном случае, кудрявыми волосами и умением петь, танцевать и шутить). Очень немногие люди понимают, что при оценке вероятности успеха необходимо учитывать эту величину. Для краткости изложения я буду обозначать характеристики, связанные с успехом (кудрявые волосы и умение петь и шутить), просто «кудрявые волосы», а отсутствие этих качеств — «нет кудрявых волос». Предположим, что 50 % потерпевших неудачу обладают этими качествами. В таком контексте для расчета вероятностей тоже можно использовать древовидные диаграммы. Давайте начнем с начала и рассмотрим все возможные исходы. В данном случае Хосе либо добьется успеха, либо потерпит неудачу, поэтому мы назовем первые ветви «успех» и «неудача». Как и прежде, мы будем надписывать вероятность каждого события вдоль соответствующей ветви.

Отметим, что эти две вероятности (0,04 и 0,96) в сумме равны 1,0, поскольку других возможных исходов нет. Один из этих исходов обязательно осуществится, поэтому сумма их вероятностей равна 1,0, что указывает на достоверность.

Хосе знает, что у 75 % из тех, кто добивается успеха, бывают кудрявые волосы. В этом примере мы пытаемся найти вероятность определенного исхода (успеха) при условии, что у нас уже имеется некоторая информация, касающаяся вероятности этого исхода. Давайте добавим новые ветви, исходящие из узлов «успех» и «неудача». В этом примере существуют четыре различных исхода: успех при наличии кудрявых волос, успех при отсутствии кудрявых волос, неудача при наличии кудрявых волос и неудача при отсутствии кудрявых волос. Эти четыре исхода показаны на следующей диаграмме:

Отметим, что поскольку 75 % (0,75) добившихся успеха имеют кудрявые волосы, а 25 % (0,25) не обладают этой характеристикой, то сумма вероятностей событий, исходящих из одного узла, должна равняться единице. Точно так же 50 % потерпевших неудачу имеют кудрявые волосы, а 50 % неудачников не обладают этим качеством. Поскольку мы учитываем всех неудачников, то сумма этих вероятностей также должна равняться единице.

После того как диаграмма нарисована, подсчитать объективную вероятность успеха Хосе уже совсем просто. Как и раньше, чтобы найти вероятность какого-либо исхода, надо перемножить вероятности вдоль ведущей к нему ветви. В данном случае мы перемножим вероятности вдоль каждой из ветвей диаграммы и представим результаты в виде таблицы:

Из таблицы видно, что общая доля людей, обладающих кудрявыми волосами, равна 0,03+ 0,48 = 0,51.

Чтобы определить истинные шансы Хосе на успех, нам следует разделить долю людей, добившихся успеха и обладающих кудрявыми волосами (0,03), на общую долю тех, кто имеет кудрявые волосы (0,03 + 0,48 = 0,51). Мы пытаемся прогнозировать успех Хосе на основе знания того факта, что у него кудрявые волосы, а некоторая часть людей с кудрявыми волосами добивается успеха. Какую часть всех людей с кудрявыми волосами (0,51) составляют те, кто добился успеха (0,03)?

Доля добившихся успеха с кудрявыми волосами / Общая доля людей с кудрявыми волосами = 0,03 / (0,03 + 0,48) = 0,06

Таким образом, шансы Хосе на успех на 50 % выше (6 % против 3 %), чем у любого неизвестного, желающего стать артистом, но все равно они очень низкие. Наличие информации о том, что он обладает некоторыми качествами, связанными с успехом, привело к некоторому увеличению вероятности его успеха по сравнению с базовым уровнем, но это увеличение очень незначительно.

Возможно, вам покажется проще следить за логикой этих расчетов, если вы сведете всю информацию в таблицу:

Вы не удивлены, что его шансы на успех оказались столь низкими, несмотря на то, что последующая или вторичная вероятность имела такое высокое значение (75 %)? Большинство людей оказывается удивлено таким результатом. Столь слабые шансы Хосе стать артистом объясняются тем, что в целом на этом поприще добивается успеха очень небольшое количество желающих. Полученное Хосе значение вероятности было близко к априорному, или базовому, уровню успеха для всех начинающих артистов. Поскольку в целом очень немногим артистам удается добиться успеха, Хосе, как и любой другой будущий артист, имеет низкие шансы на успех. Исследования показали, что вообще большинство людей склонно к переоценке шансов на успех при низких базовых уровнях и к их недооценке при высоких базовых уровнях. В предыдущем примере, касавшемся Эдит, у нас была лишь информация о базовом уровне, на которой основывался процесс прогнозирования. В этом примере у нас есть информация о Хосе, которая позволила нам предсказать его шансы на успех, превышающие базовый уровень, хотя из-за общей низкой доли успеха кандидатов в актеры в целом это повышение было незначительным.

Тем читателям, которые предпочитают мыслить пространственными категориями, я предлагаю представить себе большую группу людей, 4 % из которых являются добившимися успеха артистами, а 96 % — не являются таковыми. Эта группа изображена на рис. 7.5. Четверо из 100 нарисованных человечков улыбаются — так изображены добившиеся успеха актеры. Если у вас нет другой информации для прогнозирования успеха Хосе, то вам придется воспользоваться этим базовым уровнем и предсказать ему 4 % шансов на успех.

Рис. 7.5. Наглядное изображение 4 %-го уровня успеха. Заметьте, что 4 % лиц улыбаются.

Теперь давайте учтем дополнительную информацию: 75 % тех, кто добился успеха, имеют кудрявые волосы, а из тех, кто потерпел неудачу, кудрявыми волосами обладают лишь 50 %. Эта информация сочетается с информацией о базовом уровне. Результат изображен на рис. 7.6, где добившимся успеха и неудачникам пририсованы кудрявые волосы. Из четырех улыбающихся человечков трое (75 %) обладают кудрявыми волосами, а из 96 хмурых человечков кудрявые волосы у 48 (50 %).

Анализируя эти цифры, легко заметить, что наши математические действия заключались в том, чтобы определить долю улыбающихся человечков с кудрявыми волосами по отношению ко всем человечкам с кудрявыми волосами, а затем использовать то, что мы знаем о Хосе, для предсказания его шансов на успех. Графически это доля (или часть), которую составляют три улыбающихся кудрявых человечка по отношению к оставшемуся 51 кудрявому человечку:

3/51=0,06

Обобщая; получим следующую схему для расчета вероятности исхода при условии, что у вас имеется информация, касающаяся этой вероятности.

1. Нарисуйте полную древовидную диаграмму, указав информацию о базовом уровне (например, успеха или неудачи), в первой группе узлов. Вторичной информацией воспользуйтесь при изображении второй группы узлов

2. Составьте таблицу, где все различные сочетания базовой и вторичной информации представлены в виде строк.

3. Перемножьте вероятности вдоль каждой из ветвей диаграммы и запишите результаты в строках таблицы.

4. Составьте дробь, в которой значение вероятности интересующей вас ветви (например, успех при наличии кудрявых волос) будет числителем, а сумма этого значения и значения вероятности из другой ветви, содержащей то же условие (например, неудача при наличии кудрявых волос), будет знаменателем.

5. Проверьте ответ. Имеет ли он смысл? Следует ли ожидать, как в приведенном примере, что вероятность успеха должна быть выше базового уровня, потому что у нас имеется информация, которая связана с успехом? (Если бы мы знали, что Хосе обладает некоторым качеством, которое связано с неудачей, то мы бы предсказали, что его шансы на успех будут ниже базового уровня, но при изначально низком базовом уровне они уменьшатся ненамного.)

Существует большое количество заболеваний, базовый уровень вероятности заболеть которыми невелик для группы населения. Результаты медицинских тестов следует интерпретировать с учетом соответствующего базового уровня каждой болезни. Медицина, как и большинство других дисциплин, является вероятностной наукой; тем не менее, очень немногие врачи получают подготовку по теории вероятностей. Неумение применять информацию о базовых уровнях может привести к неверным диагнозам. Игнорирование базового уровня является распространенной ошибкой, допускаемой при размышлении об исходах вероятностных событий. Дреман (Dreman, 1979) суммирует результаты большого количества исследований на эту тему следующим образом: «Тенденция к недооценке или полному игнорированию известных вероятностей при принятии решений, несомненно, является самым серьезным недостатком интуитивного мышления» (цит. по: Myers, 1995, р. 331). Последствия подобных постоянных ошибок и когнитивных предубеждений играют серьезную роль не только в экономике, управлении и капиталовложениях, но практически в любой области, где приходится принимать решения, связанные с вероятностью.

1 ... 94 95 96 97 98 99 100 101 102 ... 149
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?