Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Читать онлайн Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин
1 ... 94 95 96 97 98 99 100 101 102 ... 110
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

31

Напомним, что причиной напряжённости между общей теорией относительности и квантовой механикой являются мощные квантовые флуктуации гравитационного поля, которые сотрясают пространство-время настолько сильно, что традиционные математические методы перестают работать. Квантовая неопределённость говорит нам, что эти флуктуации становятся тем сильнее, чем меньше расстояние (именно поэтому эти флуктуации в обычной жизни не видны). Вычисления показывают, что именно энергичные флуктуации на расстояниях, меньше планковского масштаба, расстраивают наши математические инструменты (чем меньше расстояние, тем больше энергия флуктуаций). Поскольку в рамках квантовой теории поля частицы описываются как точки, не имеющие пространственного размера, расстояния, достижимые этими частицами, могут быть сколь угодно малыми, и, следовательно, ощущаемые ими квантовые флуктуации могут быть сколь угодно энергичными. В теории струн ситуация изменяется. Струны не являются точками — у них имеется пространственный размер. Это означает, что есть предел малости достижимого расстояния, даже в принципе, так как струна не может уместиться на расстоянии меньшем, чем её длина. В свою очередь самое малое достижимое расстояние задаёт предел того, насколько энергичными могут быть квантовые флуктуации. Этот предел оказывается достаточным, чтобы приручить неуправляемую математику, позволяя теории струн соединить квантовую механику и общую теорию относительности.

32

«What Einstein never knew», NOVA documentary, 1985.

33

Некоторые исследователи могут заметить, что хотя ни квантовая теория поля, ни текущее состояние теории струн не дают объяснения свойств частиц, этот вопрос более насущен для теории струн. Он достаточно сложен, но для заинтересованных читателей приведём краткое резюме. Свойства частиц в квантовой теории поля — например, их массы — задаются числами, которые подставляются в уравнения теории. Сам факт того, что уравнения квантовой теории поля допускают варьирование таких чисел, является математическим способом сказать, что квантовая теория поля не определяет массы частиц, а, наоборот, использует их в качестве начальных данных. В теории струн гибкость в выборе масс частиц имеет схожее математическое происхождение — уравнения допускают свободное варьирование некоторых чисел, — однако проявление этой гибкости более значимо. Свободно изменяющиеся числа — числа, которые могут изменяться без каких-либо затрат энергии — соответствуют наличию в теории безмассовых частиц. (Если вернуться к главе 3 к языку кривых потенциальной энергии, то представьте совершенно плоскую кривую, то есть горизонтальную линию. Подобно тому как прогулка по совершенно плоской поверхности не меняет вашей потенциальной энергии, изменение значения такого поля не приведёт к затратам энергии. Поскольку масса частицы соответствует кривизне кривой потенциальной энергии квантового поля вблизи её минимума, то кванты таких полей являются безмассовыми.) Избыточное число безмассовых частиц является особенно неприятным свойством любой предлагаемой теории, потому что есть строгие ограничения на такие частицы, вытекающие из экспериментальных данных, полученных на ускорителях, и космологических наблюдений. Чтобы теория струн была жизнеспособной, безмассовым частицам необходимо придать массу. В течение последних лет было предложено несколько механизмов генерации масс, основанных на потоках, пронизывающих дырки в пространствах Калаби — Яу дополнительных измерений. Я вернусь к этому в главе 5.

34

Возможно, что в экспериментах будут получены данные, которые сильно пошатнут нашу веру в теорию струн. Структура теории струн гарантирует, что определённые базовые принципы должны соблюдаться во всех физических явлениях. Среди них унитарность (сумма вероятностей всех возможных результатов в данном эксперименте должна быть равна 1) и локальная Лоренц-инвариантность (в достаточно малой области справедлива специальная теория относительности), а также более технические свойства, такие как аналитичность и кроссинг-симметрия (результат столкновения частиц должен зависеть от импульсов частиц таким образом, чтобы удовлетворялся некоторый набор математических критериев). Если будет обнаружено — возможно, на Большом адронном коллайдере, — что любой из этих принципов нарушается, то примирить полученные данные с теорией струн станет трудной задачей. (Согласовать эти данные со Стандартной моделью физики частиц, которая также использует эти принципы, будет столь же проблематично; однако здесь спасает допущение, что при достаточно высоких энергиях Стандартная модель должна уступить место некой новой физике, поскольку она не включает в себя гравитацию. Но если мы получим данные, конфликтующие с любым из перечисленных выше принципов, это будет указывать на то, что новая физика — это не теория струн.)

35

Первое указание на парность форм Калаби — Яу возникло в работе Ланса Диксона, а также в независимой работе Вольфганга Лерхе, Николаса Уорнера и Кумруна Вафы. В моей работе с Роненом Плессером был предложен метод построения первого конкретного примера таких пар, которые мы назвали зеркальными парами, а соотношение между ними — зеркальной симметрией. Плессер и я также показали, что трудная задача, такая как определение числа сфер, которые можно упаковать в данную форму, неподъёмная при использовании одного из партнёров по паре, может стать гораздо легче на зеркальной форме. Этот результат был подхвачен Филиппом Канделасом, Ксенией де ла Осой, Полом Грином и Линдой Паркерс — они развили технику вычислений, основанную на равенстве, которое Плессер и я установили между «трудными» и «простыми» формулами. С помощью простой формулы они получили информацию о трудном партнёре, включая числа, связанные с упаковкой сфер, приведённые в основном тексте книги. За последующие годы зеркальная симметрия стала отдельной областью исследований, где было получено много важных результатов. Детальная история этого вопроса приведена в книге Шин-Туна Яу и Стива Надиса: Shing-Tung Yau and Steve Nadis, «The Shape of Inner Space». New York: Basic Books, 2010.

36

Классическая механика:  Электромагнетизм: d*F = *J; dF = 0. Квантовая механика:

Общая теория относительности:

37

Я имею в виду постоянную тонкой структуры, α = e2/ħc, численное значение которой (при характерных энергиях электромагнитных процессов) примерно равно 1/137, что приближённо составляет 0,0073.

38

Согласно Виттену, когда константа связи в теории струн типа I становится большой, эта теория преобразуется в O-гетеротическую теорию с малой константой связи, и наоборот; теория типа IIB с большой константой связи преобразуется в себя, в теорию типа IIB, но с малой константой связи. В случае E-гетеротической и теории типа IIA ситуация более тонкая (более подробно см.: «Элегантная Вселенная», глава 12), но общая картина такова, что все пять теорий являются участниками целой сети взаимосвязей.

39

Для подготовленного читателя отметим, что особенность струн — одномерных объектов — состоит в том, что описывающая их движение физика основана на некоторой бесконечномерной группе симметрии. Так как при движении струна заметает двумерную поверхность, то струнный функционал действия, на основе которого выводятся уравнения движения, определяет двумерную квантовую теорию поля. Классически, такие двумерные действия являются конформно-инвариантными (инвариантными относительно сохраняющих углы растяжений двумерной поверхности), и при наложении некоторых ограничений (таких как число измерений пространства-времени, в котором движется струна) конформная симметрия может сохраняться на квантовом уровне. Конформная группа преобразований симметрии бесконечномерная и это существенно для математической согласованности пертурбативного квантового анализа движущейся струны. Например, бесконечное число возбуждений движущейся струны, которые иначе имели бы отрицательную норму (возникающую из отрицательного знака временной компоненты пространственно-временной метрики), может быть устранено с помощью преобразований «вращения» из бесконечномерной группы симметрии. Более подробно можно прочитать в книге: М. Green, J. Schwarz, and Е. Witten, «Superstring Theory». Vol. 1. Cambridge: Cambridge University Press, 1988.

40

Подобно истории многих открытий, заслуживают славы те, чьи идеи легли в основу, и те, кто указали на их важность. Большую роль в открытии бран в теории струн сыграли Майкл Дафф, Пол Хов, Такео Иннами, Келлог Стелле, Эрик Бергшофф, Эргин Жегин, Пол Таунсенд, Крис Халл, Крис Поп, Джон Шварц, Ашок Сен, Эндрю Строминджер, Куртис Калан, Джо Польчински, Петр Хоржава, Джин Дай, Роберт Лей, Герман Николаи и Бернард Девитт.

1 ... 94 95 96 97 98 99 100 101 102 ... 110
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈