Под знаком кванта. - Леонид Иванович Пономарёв
Шрифт:
Интервал:
Закладка:
Прежде всего, простая реакция слияния двух ядер гелия в ядро бериллия
4Не + 4Не→8Ве
невозможна, поскольку такой изотоп бериллия в природе отсутствует. К счастью, в сечении этой реакции при энергии около 0,1 МэВ наблюдается резонанс, который можно мыслить себе как очень нестабильное ядро 8Ве*. Это «ядро» живет всего 10-16 c, однако по ядерным масштабам это не так мало: при столкновении α-частиц они, прежде чем разлететься вновь, успевают совершить около миллиона колебаний в составе 8Ве*. За это время к ним может приблизиться третья α-частица и образовать с ними ядро углерода 12С.
Эта возможность, однако, осталась бы нереализованной, если бы не вторая удача, сопутствующая успеху Зα-процесса. Дело в том, что масса трех α-частиц на 7,28 МэВ превышает массу ядра 12С и прямой процесс образования ядер углерода из трех α-частиц крайне маловероятен. Но у ядра 12С есть возбужденное состояние 12С* с энергией возбуждения 7,66 МэВ, то есть масса ядра 12С*, в отличие от массы 12С, не меньше массы трех α-частиц, а, наоборот, на 7,66 МэВ - 7,28 МэВ = 0,38 МэВ превышает ее. А это означает, что при достаточно высоких энергиях столкновения α-частиц возможна резонансная реакция
8Ве* + 4Не-+12С*.
Возбужденное ядро 12С* живет недолго — всего 10-12 с и, испуская γ-кванты или электронно-позитронную пару, переходит в основное состояние.
Но этого времени оказывается достаточно, чтобы успело произойти необратимое объединение трех α-частиц.
При температурах Т≥108 К кинетическая энергия α-частиц (0,02 МэВ) в гелиевой звезде значительно меньше энергии 0,38 МэВ, при которой выполняется условие резонанса для реакции 8Ве* + 4Не→12С*. Однако в недрах такой звезды всегда существует незначительная примесь очень быстрых частиц (10-9, примерно одна частица на миллиард), для которых это условие выполнено, и этого оказывается достаточно, чтобы осуществить последовательность реакций 3α-процесса
4Не + 4Не→8Ве*,
8Be* + 4He→12C*→I2C + γ
со скоростью в тысячу раз большей, чем горение водорода.
3α-процесс был предсказан в 1952 г. американским теоретиком Эдвином Эрнестом Солпитером (р. 1924 г.) и лишь впоследствии подтвержден всей совокупностью наблюдаемых данных. Теперь он исследован во всех деталях, но не стал от этого менее удивительным: ведь если бы массы ядер гелия и углерода отличались от действительных всего на 0,1 %, то редкое сочетание сразу двух резонансов в 3α-процессе было бы разрушено и условия нуклеосинтеза в звездах были бы иными.
Углерод — основа всех живых организмов и одно из самых привычных и необходимых веществ на Земле. Но только теперь становится ясным, от каких тонких особенностей структуры ядер и случайностей их сочетания зависит в конечном итоге и сама жизнь, и ее разумная разновидность, способная понять и оценить их смысл.
После образования углерода в гелиевом ядре звезды происходит образование других элементов: кислорода, неона и магния:
12C + 4Не→16О + γ,
16O + 4He→20Ne + γ,
20Ne + 4He→24Mg + γ.
К моменту образования магния весь гелий в звезде истощается, и, чтобы стали возможными дальнейшие ядерные реакции, необходимо новое сжатие звезды и повышение ее температуры. Это, однако, возможно не для всех звезд, а лишь для достаточно больших, масса которых превышает так называемый чандрасекаровский предел М = 1,2 Mʘ, то есть для звезд с массой, по крайней мере на 20 % превышающей массу Солнца Mʘ. (Существование такого предела установил еще в 30-х годах индийский ученый Субраманьян Чандрасекар (р. 1910 г.).)
Звезды с массами М < 1,2Mʘ заканчивают свою эволюцию на стадии образования магния и превращаются в белые карлики — звезды с массой около 0,6Mʘ, размером с нашу Землю и плотностью около тонны в кубическом сантиметре. В белых карликах электроны отделены от ядер, так что вся звезда представляет собой единый кристалл, свойства которого можно описать только с помощью уравнений квантовой механики, используя, в частности, и знаменитый принцип Паули, запрещающий двум электронам иметь одинаковые квантовые числа. Теорию белых карликов построил уже в 1926 г. Ральф Говард Фаулер (1889—1944).
В более массивных звездах при температурах 5∙108 — 109 градусов происходит синтез кремния в реакциях:
24Mg + 4He → 28Si + γ,
16О+16О→28Si+α.
После очередного этапа гравитационного сжатия температура повышается до 2 млрд. градусов и средняя энергия излучаемых гамма-квантов достигает 0,2 МэВ, при которой они способны разрушать ядра кремния на α-частицы:
28Si+γ→74He.
Эти α-частицы затем последовательно вдавливаются в ядра кремния, образуя более тяжелые элементы — вплоть до железа. На этом источники ядерной энергии внутри звезды истощаются, поскольку образование более тяжелых элементов идет не с выделением, а с затратой энергии: эволюция звездного вещества вступает в новую фазу.
Теперь ядерные реакции идут на поверхности железной сердцевины звезды, где еще сохранились несгоревшие ядра 4Не, 12С, 20Ne, а также небольшое количество водорода. В некоторых из этих реакций возникают свободные нейтроны, которые поглощаются ядрами железа, и — точно так же, как в опытах Ферми,— после β-распада нейтрона образуется новое ядро со следующим порядковым номером, то есть ядро кобальта:
58Fe + n→59Fe*→59Co + е + ˜v.
Таким же образом из кобальта образуется никель, из никеля — медь и т. д., вплоть до изотопа висмута 209Вi.
На этом возможности s-процесса (slow — медленный) образования химических элементов исчерпываются, и все элементы тяжелее висмута образуются в r-процессе (rapid — быстрый), при взрывах звезд.
Такой взрыв становится возможным, если масса звезды достаточно велика для того, чтобы силы тяготения смогли сжать и нагреть ее железную сердцевину до 4 млрд. градусов и выше. В этих условиях каждое ядро железа 56Fe распадается на 13 α-частиц и 4 нейтрона, поглощая при этом 124 МэВ энергии. Сердцевина звезды охлаждается и начинает катастрофически сжиматься под действием сил тяготения, которые теперь уже не сдерживаются давлением излучения. Происходит имплозия, взрыв внутрь, коллапс звезды. При этом вначале α-частицы разваливаются на протоны и нейтроны, а затем электроны вдавливаются в протоны, образуя нейтроны и испуская нейтрино:
р + е→ n+v.
Сложное взаимодействие процессов в ядре звезды и ее оболочке (еще до конца не понятое) приводит к тому, что вся звезда взрывается, сбрасывая оболочку. (Ее остатки мы потом наблюдаем