Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Математика » Цифры врут. Как не дать статистике обмануть себя - Том Чиверс

Цифры врут. Как не дать статистике обмануть себя - Том Чиверс

Читать онлайн Цифры врут. Как не дать статистике обмануть себя - Том Чиверс
1 ... 5 6 7 8 9 10 11 12 13 ... 38
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
не более чем в 5 % случаев, – то открытие статистически значимо, а нулевую гипотезу можно отвергнуть.

Предположим, что при тестировании средний балл у людей, прочитавших книгу, действительно оказался выше. Если p-значение такого результата меньше 0,05, будем считать, что мы достигли статистической значимости, отвергнем нулевую гипотезу (что книга не приносит пользы) и примем альтернативную (книга помогает лучше понимать статистику). Величина p-значения здесь показывает нам, что будь нулевая гипотеза верна и проведи мы тестирование сто раз, наши читатели показали бы не меньшее преимущество перед второй группой менее чем в пяти случаях.

* * *

Статистическая значимость сбивает с толку даже ученых. Исследование 2002 года показывает, что 100 % студентов-психологов и, хуже того, 90 % их преподавателей неправильно трактуют этот термин. В другом исследовании выяснилось, что в 25 из 28 рассмотренных учебников по психологии есть хотя бы одна ошибка в данном определении.

Давайте же разберемся с некоторыми возможными заблуждениями. Во-первых, важно помнить, что статистическая значимость – понятие условное. Нет ничего магического в числе 0,05. Вы можете взять за основу другое: меньшее, тем самым объявляя недостоверными большее число результатов (отнеся их к категории случайных), или большее, расширяя границы статистически значимых данных. Чем выше планка, тем выше риск ложноположительных результатов, чем ниже – тем выше риск ложноотрицательных. Ужесточив критерий, мы можем подумать, что чтение книги никак не сказывается, хотя на самом деле это не так. Ну и, конечно, наоборот.

Во-вторых, статистически значимый результат не обязательно значим в обыденном смысле. Например, если в группе тех, кто книгу не читал, средний балл – 65, а в другой – 68, то результат вполне может считаться статистически значимым, но для вас он вряд ли важен. Статистическая значимость какого-то результата характеризует вероятность его случайного получения, а не его важность.

И в-третьих: p = 0,05 для вашего результата не гарантирует, что вероятность ложности вашей гипотезы составляет всего одну двадцатую. Это самое распространенное заблуждение, и оно лежит в основе многих научных ошибок.

Проблема же в том, что хотя выбор в качестве границы статистической значимости числа 0,05 совершенно условен, ученые и – что еще важнее – редакции научных журналов принимают ее за точку отсечения. Если для ваших результатов p = 0,049, у вас есть шансы их опубликовать, а если p = 0,051, то такие шансы ничтожны. А ученым нужны публикации их исследований, чтобы получить грант, найти постоянную должность и вообще рассчитывать на карьерный рост. Поэтому они крайне заинтересованы в получении статистически значимых результатов.

Вернемся же к нашему эксперименту. Мы хотим показать, что эта книга помогает лучше разбираться в статистике и достойна попасть в список бестселлеров Sunday Times; и после этого, надеемся, будем получать приглашения на престижные коктейльные вечеринки. Но мы получаем лишь p = 0,08.

Наверное, просто не повезло, думаем мы. И повторяем эксперимент – достигаем 0,11. И еще, и еще, и еще раз, пока наконец не выходит 0,04. Потрясающе! Мы докладываем о результатах и дальше припеваючи живем на роялти с продажи книги. Только это почти наверняка ложноположительный результат. Если провести эксперимент 20 раз, вполне можно ожидать один случайный результат.

Есть и другие способы достичь желаемого. Мы можем по-разному тасовать данные. Например, не только считать баллы, но и измерять, насколько быстро люди проходят тест, или оценивать красоту почерка. Пусть читатели книги не получают более высокие баллы, но вдруг они быстрее справляются с тестом? Или у них улучшился почерк? А можно отбросить самые крайние результаты, назвав их выбросами. Если ввести достаточно параметров и по-разному сочетать их или внести в данные необходимые и кажущиеся разумными поправки, то по чистой случайности рано или поздно наверняка найдется что-то подходящее.

Теперь вернемся к мужчинам, пытающимся покорить женщин хорошим аппетитом. В конце 2016 года Вансинк, ведущий автор того исследования, опубликовал в своем блоге пост – «Аспирантка, которая никогда не говорила „нет“». Это положило конец его карьере.

Вансинк написал о новой турецкой аспирантке, пришедшей в его лабораторию. Он дал ей данные провалившегося эксперимента, который проводился без внешнего финансирования и имел нулевые результаты. (Это был месячный эксперимент, в ходе которого одним людям продавали входные билеты в итальянский ресторан со шведским столом по цене в два раза выше, чем другим.) Вансинк предложил ей проанализировать данные, потому что, по его мнению, из них можно было что-нибудь извлечь.

По его рекомендации аспирантка сделала это десятками различных способов и – вас это не должно удивить – нашла кучу корреляций. В нашем воображаемом эксперименте с чтением книги мы бы точно так же могли перебирать данные на разные лады, пока бы не обнаружили что-нибудь со значением p < 0,05. На основании полученного набора данных аспирантка с Вансинком опубликовали пять статей, включая ту самую. В ней утверждалось, что в присутствии женщин мужчины едят больше пиццы (p < 0,02) и салата (p < 0,04).

Пост в блоге насторожил ученых. Описанная в нем практика называется p-подгонкой (p-hacking) – это перетряхивание данных в поисках утверждений, позволяющих преодолеть барьер в p = 0,05 и опубликовать статью. Методологически подкованные исследователи стали пересматривать все старые статьи Вансинка, а научная журналистка из BuzzFeed News Стефани Ли получила от своего источника электронную переписку ученого с сотрудниками и опубликовала ее. Оказалось, что он рекомендовал аспирантке разбивать данные на «мужчин, женщин, обедающих, ужинающих, питающихся в одиночку, по двое, в группах более двух человек, заказывающих алкогольные или безалкогольные напитки, садящихся рядом со шведским столом или далеко от него и т. п.».

В старых публикациях Вансинка обнаружились и другие проблемы методологического характера, а его имейлы указывали на порочную статистическую практику. Например, он писал: «Мы должны получить из этого намного больше… Думаю, стоит перебрать данные в поисках значимых и увлекательных утверждений». Он хотел, чтобы их исследование «стало вирусным».

Этот случай по-настоящему драматичен. Но вообще p-подгонка – в менее драматичных формах – происходит постоянно. Обычно она вполне невинна. Ученым нужно добиться p < 0,05 для публикаций, поэтому они повторяют исследования или заново анализируют результаты старых. Возможно, вы слышали о «кризисе воспроизводимости»: многие важные открытия в психологии и иных науках оказались неверными, когда другие ученые попытались повторить эксперименты первооткрывателей. Он произошел именно потому, что ученые не осознавали этой проблемы: они пересортировывали свои данные и повторяли эксперименты до тех пор, пока не получали статистически значимые результаты, не понимая, что таким образом работа становится бессмысленной. Мы еще вернемся к этому вопросу в главе 15, «В погоне за новизной».

Для того чтобы вскрыть ситуацию с Вансинком, потребовались месяцы кропотливой работы добросовестных статистически подкованных исследователей и опытного научного журналиста. По большей части научные журналисты пишут новости на базе пресс-релизов. Они вряд ли могут выявить p-подгонку, даже имея на руках наборы данных, которых у них обычно нет.

1 ... 5 6 7 8 9 10 11 12 13 ... 38
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?