Категории
Самые читаемые
ChitatKnigi.com » 🟢Разная литература » Зарубежная образовательная литература » Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт

Читать онлайн Это база: Зачем нужна математика в повседневной жизни - Йэн Стюарт
1 ... 5 6 7 8 9 10 11 12 13 ... 85
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
у Темных 49 + 49 + 49 + 1 + 1 = 149 голосов. Разрыв в эффективности составляет (101–149)/500 = –0,096 = –9,6 %, что говорит о манипуляциях против Темных. Однако Темные – партия меньшинства, ей не следует рассчитывать больше чем на два места, что они и делают. Получение Темными еще одного места дало бы партии меньшинства большую часть мест.

Слева: график зависимости числа мест от числа голосов показывает пропорциональное представительство (жирная линия) и область (выделена серым), в которой разрыв в эффективности считается справедливым. Справа: график модифицированного разрыва в эффективности: серая область окружает диагональную линию

Бартон объясняет обе проблемы использованием необработанных данных о бесполезных голосах. На любых выборах голоса сверх необходимого, отданные за победителя, пропадают напрасно, какими бы ни были границы округов. Бартон заменяет «бесполезные голоса» на «голоса, пропадающие без необходимости», вычисляя для каждой партии долю голосов, которые однозначно пропадут, и вычитая их из бесполезных голосов. При первоначальном определении график места-голоса дает узкую полосу вокруг линии, идущей от 25 % голосов внизу до 75 % наверху, как на рисунке слева. Диагональная линия показывает идеальный график для пропорционального представительства. То и другое совпадает лишь на очень небольшом участке вблизи распределения голосов 50:50. Если учитывать голоса, пропадающие без необходимости, то получается график, показанный справа. Здесь область приемлемого разрыва в эффективности плотно окружает диагональ, что, конечно, куда более разумно.

* * *

Еще один метод распознавания манипуляций заключается в рассмотрении альтернативных карт и сравнении гипотетических результатов с использованием данных о вероятных паттернах распределения голосов по всему региону, о разбивке которого на округа идет речь. Если карта, предложенная Темными, дает им 70 % мест, а большинство альтернативных карт – лишь 45 %, то они явно мухлюют.

Основная проблема этой идеи заключается в том, что даже при разумном количестве округов нельзя рассмотреть все возможные карты. Происходит комбинаторный взрыв, то есть число вариантов растет с невероятной скоростью. Более того, все рассмотренные карты должны соответствовать закону, накладывающему ограничения, которые математически невозможно учесть. Однако математики давно нашли метод обхода комбинаторного взрыва: это марковская цепь Монте-Карло (Markov Chain Monte Carlo, MCMC). Вместо изучения каждой возможной карты MCMC предполагает создание случайной выборки карт, достаточно большой для точной оценки. Такой подход аналогичен тому, что используют центры общественного мнения, когда оценивают намерения избирателей по результатам опроса относительно небольшой случайной выборки.

Методы Монте-Карло восходят к Манхэттенскому проекту военного времени, целью которого было создание атомной бомбы. Математик Станислав Улам, выздоравливавший после болезни, раскладывал пасьянсы, чтобы скоротать время. Заинтересовавшись своими шансами на успех, он попытался оценить, какое число раскладов карточной колоды приведет к успеху при идеальной игре, но быстро понял бесперспективность такого подхода. Тогда он стал раскладывать пасьянсы один за другим и подсчитывать, как часто пасьянс сходится, а потом понял, что аналогичный фокус можно проделать и с физическими уравнениями, которые приходилось решать в рамках Манхэттенского проекта.

Цепи Маркова, названные в честь русского математика Андрея Маркова, представляют собой обобщение случайного блуждания (блуждания пьяницы). Подгулявший прохожий бредет, спотыкаясь, вдоль улицы, шагая то вперед, то назад случайным образом. Как далеко он продвинется в среднем после заданного числа шагов? (Ответ: в среднем примерно на квадратный корень из числа шагов.) Марков нарисовал в воображении аналогичный процесс, где улица была заменена сетью, а для переходов вдоль ребер этой сети назначены вероятности. Ключевой вопрос: после очень долгого блуждания по окрестностям какова вероятность нахождения в любой заданной точке? Цепи Маркова моделируют многие задачи реального мира, в которых происходят последовательности событий, вероятности которых зависят от текущих обстоятельств.

MCMC – это результат применения методов Монте-Карло к выборке из нужного списка вероятностей. В 2009 году статистик Перси Диаконис подсчитал, что около 15 % статистических расчетов в науке, технике и бизнесе проводится с помощью MCMC, так что имеет смысл применить такой мощный, отработанный и полезный метод для выявления манипуляций на выборах. Используем случайные блуждания по Маркову для генерирования карт избирательных округов, сделаем из них выборку по методу Монте-Карло и получим статистический метод оценки того, насколько типична предлагаемая карта. К этому нужно добавить лишь толику хитроумных математических выкладок, известных как эргодическая теория, которые гарантируют, что достаточно длинная случайная цепочка блужданий дает точную статистическую выборку.

Не так давно математики давали показания о MCMC в судах. В Северной Каролине Джонатан Маттингли использовал MCMC-оценки разумной серии величин, таких как полученные в результате выборов места, для доказательства того, что выбранный план округов представлял собой статистическое исключение и давал преимущества одной партии. В Пенсильвании Уэсли Пегден с помощью статистических методов показал, насколько мала вероятность того, что политически нейтральный план округов даст худшие результаты, чем планы, созданные на основе случайных блужданий, и оценил вероятность случайного получения такого результата. В обоих случаях судьи сочли математические доказательства убедительными.

* * *

Математическое истолкование избирательных манипуляций работает в обе стороны. Оно может не только помогать избирателям и представителям закона выявлять манипуляции, но и предлагать более эффективные методы подтасовок. Оно способно помогать, с одной стороны, удерживать людей в рамках закона, а с другой – нарушать закон или, что, возможно, еще хуже, извращать его смысл. Всякий раз, когда вводятся технические ограничения, призванные предотвращать нарушения, люди обходят систему и внимательно изучают законодательные нормы в поисках лазеек. Огромное достоинство математического подхода заключается в том, что он делает правила четкими и понятными. Кроме того, он порождает совершенно новую возможность. Вместо бесплодных попыток убедить конкурирующие политические силы договориться о том, что считать справедливостью, давая им возможность обойти систему, а потом наводить порядок в системе через суды, разумнее позволить им разрешить спор через единоборство. Не в общей свалке, где власть и деньги дают громадное преимущество, а на основе принципов, гарантирующих не только справедливость результата и восприятие его как справедливого, но и невозможность отрицания его справедливости заинтересованными сторонами.

Такой запрос может показаться чрезмерным, но в последнее время расцвела целая область математики, посвященная именно этой идее: теория справедливого дележа. И она гласит, что тщательно структурированные принципы переговоров помогают добиться того, что поначалу представляется невозможным.

Классический пример, из которого вытекает все остальное, – это спор двух детей из-за пирожного. Задача заключается в том, чтобы разделить пирожное, используя протокол – набор заранее определенных правил, – справедливость которого можно доказать. Классическое решение: «Я режу, ты выбираешь». Алиса разрезает пирожное таким образом, чтобы, по ее мнению, обе части имели равную ценность. После этого Боб выбирает себе один из кусочков. У Боба не должно возникнуть возражений, потому что выбирает он

1 ... 5 6 7 8 9 10 11 12 13 ... 85
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?