Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Математика » Живой учебник геометрии - Перельман Яков Исидорович

Живой учебник геометрии - Перельман Яков Исидорович

Читать онлайн Живой учебник геометрии - Перельман Яков Исидорович
1 2 3 4 5 6 7 8 9
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Поступим так. Отмерим от точки В по прямой линии какое-нибудь расстояние ВС и у концов его В и С измерим углы 1 и 2 (черт. 73). Если теперь на удобной местности отмерить расстояние DE, равное ВС, и построить у его концов углы а и b(черт. 74), равные углам 1 и 2, то в точке пересечения их сторон получим третью вершину Fтреугольника DEF. Легко убедиться, что треугольник DEFравен треугольнику АВС; действительно, если представим себе, что треугольник DEFналожен на ABCтак, что сторона DEсовпала с равной ей стороною ВС, то уг. а совпадет с углом 1, угол b – с углом 2, и сторона DFпойдет по стороне ВA, а сторона EFпо стороне СА. Так как две прямые могут пересечься только в одной точке, то и вершина Fдолжна совпасть с вершиной A. Значит, расстояние DFравно искомому расстоянию ВА.

Задача, как видим, имеет т о л ь к о о д н о решение. Вообще по стороне и двум углам, прилегающим к этой стороне, можно построить т о л ь к о о д и н треугольник; других треугольников с такою же стороною и такими же двумя углами, прилегающими к ней в тех же местах, быть не может. Все треугольники, имеющие по одной одинаковой стороне и по два одинаковых угла, прилегающих к ней в тех же местах, могут быть наложением приведены в полное совпадение. Значит, это признак, по которому можно установить полное равенство треугольников.

Вместе с прежде установленными признаками равенства треугольников, мы знаем теперь следующие три:

Т р е у г о л ь н и к и р а в н ы:

п о т р е м с т о р о н а м;

п о д в у м с т о р о н а м и у г л у м е ж д у н и м и;

п о с т о р о н е и д в у м у г л а м.

Эти три случая равенства треугольников мы будем в дальнейшем обозначать ради краткости так:

по трем сторонам: ССС;

по двум сторонам и углу между ними: СУС;

по стороне и двум углам: УСУ.

Применения

14. Чтобы узнать расстояние до точки Aна другом берегу реки от точки В на этом берегу (черт. 5), отмеряют по прямой линии какую-нибудь линию ВС, затем при точке В строят угол, равный AВС, по другую сторону ВС, а при точке С – таким же образом угол, равный АСВ. Расстояние точки Dпересечения сторон обеих сторон углов до точки В равно искомому расстоянию АВ. Почему?

Конец ознакомительного фрагмента. Полный текст доступен на www.litres.ru

1 2 3 4 5 6 7 8 9
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?