Под знаком кванта. - Леонид Иванович Пономарёв
Шрифт:
Интервал:
Закладка:
Итак, ядерный реактор построить можно. Но можно ли им управлять? Не взорвется ли он, как только значение коэффициента размножения нейтронов k превысит единицу? Оказалось, что природа и здесь пошла навстречу человеку.
В лавине работ, которые появились сразу вслед за открытием деления урана, была одна, которую вначале не оценили должным образом. В марте 1939 г. Робертс, Мейер и Вонг из Колумбийского университета обнаружили, что примерно 1 % нейтронов вылетает при делении урана не вместе с осколками, а чуть позже — через 0,2, 0,9 и даже через 56 с. Физика этого явления вскоре стала понятной: запаздывающие нейтроны, в отличие от мгновенных, вылетают не из ядра урана, а из его осколков.
Осколки эти — свыше сотни изотопов около сорока различных элементов из середины таблицы Менделеева — отягощены избытком нейтронов и стремятся от них избавиться. Большая часть изотопов освобождается от нейтронов путем β-распада, то есть превращая их в протоны,— точно так же, как это происходило в опытах Ферми по поглощению нейтронов ядрами. Однако небольшая часть образовавшихся изотопов, после некоторых колебаний, выбрасывает лишний нейтрон целиком, не расщепляя его на протон и электрон. Именно эти запаздывающие нейтроны, которые составляют всего 0,64 % от общего их числа, позволяют управлять работой ядерного реактора. В самом деле, если по какой-то причине число нейтронов в реакторе внезапно увеличится, то благодаря запаздывающим нейтронам они станут размножаться лавинообразно не сразу, а только через несколько секунд. Этого времени вполне достаточно, чтобы погасить «атомный огонь» вручную, без всякой автоматики, погружая в толщу реактора стержни из бора или кадмия (сечения захвата нейтронов для них огромны: для кадмия, например, σзахв = 2450 барн).
ЯДЕРНЫЙ РЕАКТОР
Названия «атомная энергия», «атомный реактор», «атомная бомба» — дань исторической традиции. В действительности при этом речь всегда идет о ядерной энергии, ядерном реакторе и ядерной бомбе. И хотя инерцию общепринятого словоупотребления преодолеть теперь, по-видимому, уже нельзя, помнить об этом следует.
В среду, 2 декабря 1942 г., в 15 ч 25 мин по местному времени на теннисном корте под трибунами стадиона в Чикаго Энрико Ферми впервые в истории человечества осуществил управляемую ядерную реакцию в «атомном котле». Первый ядерный реактор представлял собой сплющенный эллипсоид диаметром 8 м и высотой 6 м, сложенный из 385 т графитовых брикетов, между которыми на расстоянии 21 см друг от друга было размещено 46 т урановых блоков весом 2 кг каждый, то есть в целом реактор был похож на кристалл с кубической решеткой. Мощность этого реактора — 40 Вт — была меньше мощности горящей спички, и после 28 мин работы ядерная реакция в нем была остановлена с помощью кадмиевых полос. Криков восторга не было, лишь Вигнер откупорил припасенную им бутылку кьянти — любимого вина Ферми. 43 участника и свидетеля этого события понимали его значительность: отныне пути назад, в доатомную эру, больше не было.
В среду 25 декабря 1946 г., в 19 часов в Москве под руководством Игоря Васильевича Курчатова запущен первый советский ядерный реактор.
15 декабря 1948 г. неподалеку от Парижа под руководством Ирэн и Фредерика Жолио-Кюри запущен французский ядерный реактор.
27 июня 1954 г. вступила в строй первая в мире атомная электростанция в г. Обнинске под Москвой мощностью 5 МВт.
С тех под прошло не так много лет, но уже сейчас свыше 400 ядерных реакторов в 26 странах мира вырабатывают более 300 ГВт электроэнергии — около 16% всей электроэнергии на Земле, то есть больше, чем все гидростанции мира. Во Франции АЭС вырабатывают 70 % электроэнергии, а к концу века эта доля возрастет до 85 % (во всем мире — до 30 %).
История овладения атомной энергией уникальна во многих отношениях: по значимости проблемы, обстоятельствам, сопутствовавшим ее решению, и последствиям, которые еще далеко не всеми осознаны. В науке и раньше так случалось, что два исследователя независимо друг от друга открывали одно и то же явление. Само по себе это не очень удивительно, если мы верим в объективность законов природы. Но впервые случилось так, что сотни и тысячи людей, разделенные океанами, пожаром войны и стеной секретности, последовательно, шаг за шагом приходили к одинаковым заключениям, ставили и решали одни и те же научные, технологические и инженерные задачи и примерно в той же последовательности. Только в 1955 г., после 15 лет практически полной изоляции, ученые из СССР и США, Франции и Англии, Канады и Японии — всего 79 стран — собрались в Женеве на Первую международную конференцию по мирному использованию атомной энергии и смогли убедиться, что их независимые измерения и формулы совпали с большой точностью. Мало того, часто совпадали даже обозначения в формулах, полученных в разное время и разными людьми. Как будто Книга Природы открылась всем им одновременно, а они лишь записали ее письмена.
Оглядываясь назад, трудно удержаться от удивления, насколько узкой оказалась тропа и сколь хрупким мостик из века пара и электричества в эпоху атома и ядра. Ведь любой из четырех сомножителей в формуле для коэффициента размножения нейтронов мог оказаться на 5—10 % меньше — и реактор на природном уране был бы невозможен. А если бы не запаздывающие нейтроны, то управление реактором стало бы специальной и трудной проблемой.
Все физические процессы, происходящие внутри ядерного реактора, мы знаем теперь во всех деталях. Для начала цепной реакции в принципе достаточно даже одного нейтрона. В толще урана они всегда есть: каждую секунду в 1 кг урана спонтанно делятся 7 ядер, и вылетающие при этом нейтроны могут служить «спичкой», поджигающей «урановый костер». Вылетевшие нейтроны, прежде чем дать
начало новому поколению нейтронов, живут в реакторе меньше тысячной доли секунды. За это время они успевают испытать с ядрами углерода 114 соударений, пройти путь 54