Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Читать онлайн Звезды: их рождение, жизнь и смерть - Иосиф Шкловский
1 ... 79 80 81 82 83 84 85 86 87 ... 108
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Возникает вопрос: а почему у вновь образовавшихся нейтронных звезд так велики пространственные скорости? По-видимому, причина кроется в самих обстоятельствах рождения нейтронных звезд. Вся совокупность наблюдательных данных, а также теория, говорят о том, что нейтронные звезды образуются в процессе взрыва сверхновых звезд. Очень трудно представить себе, однако, что такой взрыв должен быть идеально симметричным. В самом деле, наличие, например, магнитного поля, ось которого не совпадает с осью вращения, обязательно сделает выброс вещества из звезды, пусть даже немного, несимметричным. К чему же это приведет? Скорость выброса вещества во время взрыва звезды достигает 10 000 км/с (см. часть III), причем выбрасывается по крайней мере 10% массы звезды. Тогда очевидно, что если степень асимметрии взрыва всего лишь 10% (т. е. в одну сторону выбрасывается на 10% вещества больше, чем в другую), то по закону сохранения импульса тело, оставшееся после взрыва, т. е. нейтронная звезда, получит «скорость отдачи» не меньшую, чем 100 км/с. Скорее всего, эта скорость будет больше. Любопытно, что вывод о больших скоростях, образующихся при гравитационном коллапсе нейтронных звезд, был сделан теоретически до того, как этот результат был получен из наблюдений. О другой разновидности механизма получения больших скоростей вновь образующихся пульсаров речь будет идти в § 22.

Итак, пространственные скорости пульсаров очень велики, во всяком случае они превышают 200 км/с. Но если это так, то за миллиарды лет они должны уйти очень далеко от места своего рождения. У многих пульсаров скорости поступательного движения настолько велики, что они должны покидать нашу Галактику. Отсюда следует, что старые пульсары должны образовывать гигантскую квазисферическую «корону» вокруг Галактики размером в сотни тысяч световых лет. Ничего подобного, однако, не наблюдается! Пространственное распределение пульсаров примерно такое же, как у старых звезд галактического диска. Они концентрируются к галактической плоскости в слое толщиной около 300 пс. Кроме того, на расстоянии свыше 15 000 пс от галактического центра пульсары отсутствуют. Как же согласовать между собой с одной стороны — огромные пространственные скорости пульсаров, а с другой — их сравнительно «плоское» пространственное распределение? Скорее всего ответ такой. Спустя несколько миллионов лет после образования пульсары перестают излучать радиоволны. Поэтому «истинный» возраст подавляющего большинства пульсаров не превышает 2—3 миллиона лет. Следовательно, определение возраста пульсаров по формуле t = далеко не всегда дает хороший результат.

Полное количество всех пульсаров в Галактике должно быть порядка нескольких сотен тысяч. Только малая часть их наблюдаема (всего сейчас известно около 350 пульсаров). Так как средний возраст пульсаров близок к 2 106 лет, то частота появления новых пульсаров приблизительно равна одному объекту за несколько десятков лет — величина, близкая к частоте вспышек сверхновых.

Среди всех известных до настоящего времени пульсаров, пожалуй, самым интересным является пульсар NP 0531, находящийся вблизи центра Крабовидной туманности. Все его свойства, если можно так выразиться, оказываются «экстремальными»: он является самым короткопериодическим[ 52 ], быстрее всех увеличивающим свой период, а следовательно, самым молодым из всех известных объектов этого класса. Но, пожалуй, самым интересным является то, что он является пока единственным пульсаром, от которого наблюдается не только радио-, но и оптическое излучение.

Мы уже упоминали в § 17, что в центральной части Крабовидной туманности находятся две звездочки приблизительно 16-й величины (см. рис. 17.5). Расстояние между этими звездочками меньше 5. Северная звездочка ничего интересного не представляет. Она не связана генетически с Крабовидной туманностью, а просто случайно проектируется на туманность — ее расстояние значительно меньше. Совершенно другую природу имеет южная звездочка. Еще в 1942 г. был получен ее спектр. Он оказался весьма необычным. Высокая интенсивность его ультрафиолетовой части указывала на то, что поверхность этой звезды очень горяча. Но самое примечательное — это отсутствие каких бы то ни было спектральных линий, как излучения, так и поглощения, в спектре этой звезды. Столь необычные характеристики «южной» звезды в Крабовидной туманности послужили для Бааде основанием предположить, что эта звезда — остаток взрыва Сверхновой 1054 г. В дальнейшем Бааде, как уже говорилось в § 17, исследовал удивительно быструю изменчивость деталей центральной части Крабовидной туманности, в непосредственной близости от южной звезды. Это указывало на продолжающуюся активность южной звезды — новый важный аргумент в пользу гипотезы Бааде.

Сразу же после того как Стэйлин и Райфенстайн открыли пульсар в Крабовидной туманности, а Комелла на Пуэрто-Риканской обсерватории в Аресибо определил необычно короткий его период, возникла идея, что этот пульсар может излучать импульсы и в оптическом диапазоне длин волн. Так как из радионаблюдений период пульсаций был известен, задача для оптических астрономов значительно упрощалась. Впервые оптические импульсы от пульсара NP 0531 наблюдали в самом начале 1969 г. американские астрономы Кок, Дисней и Тэйлор. Они использовали сравнительно небольшой 36-дюймовый телескоп обсерватории Стюарта в штате Аризона. Почти одновременно оптические импульсы с периодом 0,033 секунды были получены и двумя другими исследовательскими группами.

Можно и раньше было подозревать, что пульсар NP 0531 каким-то образом связан с южной звездочкой в центральной части Крабовидной туманности. В пользу этого предположения указывали, во-первых, близость координат обоих объектов и, во-вторых, необычные свойства южной звезды, о которых речь шла выше. Оптические наблюдения со всей наглядностью подтвердили это предположение. Прямые фотоэлектрические наблюдения блеска указанной звезды, выполненные с малым временем накопления, выявили поразительное явление: блеск этой звезды не постоянен (как долгие годы молчаливо предполагалось астрономами), а строго периодически меняется, как это видно на рис. 20.3. Период с огромной точностью равен периоду радиопульсара NP 0531. Так же как и в радиодиапазоне, наряду с «главным» импульсом в оптических лучах наблюдается «интеримпульс», который находится приблизительно (но не точно) посредине между главными импульсами. Итак, южная звездочка Крабовидной туманности, известная астрономам уже свыше 100 лет, оказалась вовсе не звездой, а пульсаром! Если бы не развитие радиоастрономии, приведшее в конце концов к открытию пульсаров, никому и. в голову не могла бы прийти «больная» мысль искать столь необычно короткую периодичность в оптическом излучении давно известного объекта! Этот пример наглядно демонстрирует взаимодействие и взаимосвязь оптической и радиоастрономии — двух могучих ветвей одного старого дерева. Таких примеров можно привести немало — стоит только упомянуть открытие квазаров. Во всех случаях, как правило, роль «разведчика», гида, обнаруживающего дотоле неизвестное явление природы, играет радиоастрономия.

Рис. 20.3: Кривая блеска пульсара NP 0531 (вверху — фотография центральной части Крабовидной туманности в соответствующие моменты времени).Рис. 20.4: «Стробоскопические» наблюдения оптического излучения пульсара NP 0531.

Со всей очевидностью необычный характер южной звезды в Крабовидной туманности доказывают фотографии, приведенные на рис. 20.4. При получении этих фотографий использовался принцип хорошо известной детской игрушки, называемой «стробоскоп». Пучок света в телескопе фокусируется на телевизионную камеру, которая колеблется с периодом, точно равным периоду пульсара NP 0531. Если колебания камеры происходят в «фазе» с импульсами оптического излучения от этого пульсара, то каждый раз камера будет принимать его «максимальное» излучение. Если же фаза будет другой, то на камеру будет действовать весьма слабый световой поток от пульсара, излучаемый им в промежутке между импульсами. С другой стороны, эффект от соседних, «обычных» звезд, очевидно» совершенно не зависит от фазы колебаний камеры. На рис. 20.4 внизу видны три звезды, между тем как на фотографии, приведенной на рис. 20.4 вверху, появилась четвертая, самая яркая. Это и есть южная звезда Крабовидной туманности, фотография которой получена при совпадении фаз колебаний телевизионной камеры и пульсара. Трудно найти в современной астрономии более наглядное доказательство необычной природы давно известного космического объекта.

1 ... 79 80 81 82 83 84 85 86 87 ... 108
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈