Категории
Самые читаемые
ChitatKnigi.com » 🟠Детская литература » Детская образовательная литература » Психология профессиональной пригодности - Вячеслав Бодров

Психология профессиональной пригодности - Вячеслав Бодров

Читать онлайн Психология профессиональной пригодности - Вячеслав Бодров
1 ... 78 79 80 81 82 83 84 85 86 ... 109
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

При изучении корреляционной зависимости между критериями, выраженными в баллах или классовых вариантах и при большом количестве сопоставляемых пар, целесообразней r вычислять по способу сумм [141] с использованием корреляционной решетки и формулы

Таблица 8

Расчет показателя корреляции рангов

где Spaxay – сумма произведений частот корреляционной решетки (Pxy) на соответствующие порядковые номера классов (баллов); S – сумма первого полного ряда накопленных частот, получаемого кумуляцией частот каждого ряда в направлении, обратном порядковой нумерации классов; σx и σy – средние квадратические отклонения рядов; N – общее число парных наблюдений.

Изучая корреляционную связь между двумя признаками x и y, необходимо помнить о возможности существования зависимости или влияния на них других варьирующих признаков. Поэтому наряду с изучением парных корреляций возникает задача измерения множественных связей между варьирующими признаками индивидуальных психофизиологических особенностей организма и критериями успешности обучения. Для решения этой задачи необходимо воспользоваться коэффициентом общей или совокупной корреляции и частными или парциальными коэффициентами корреляции.

Совокупный коэффициент корреляции между варьирующими признаками x, y и z вычисляется по следующей формуле:

где rxy, rxz и ryz – парные коэффициенты линейной корреляции между признаками x и y, x и z, y и z.

На практике чаще применяется парциальный коэффициент корреляции, измеряющий связь между двумя варьирующими признаками x и y при постоянном значении третьего – z – учитываемого признака, который может иметь или имеет связь с первыми двумя. Так, парциальный коэффициент между x и y при исключительном влиянии на эту связь, составляет

Соответственно рассчитываются коэффициенты парциальной корреляции между x и z при влиянии y– rxz(y); y и z – при влиянии x– ryz(x).

Как видно из приведенных формул, расчет значений совокупного и парциальных коэффициентов корреляций производится на основе парных коэффициентов корреляций.

В некоторых случаях возникает необходимость изучения связи между несколькими внешними критериями, даваемыми разными экспертами (независимые характеристики, ранжирование и др.), и ее достоверности. Например, для обеспечения объективности выведения оценки летных способностей курсантов по 9-балльной шкале по мнению четырех экспертов А, Б, В, Г из летно-инструкторского состава (командир и его заместители) необходимо определить степень совпадения их мнений в отношении одних и тех же курсантов. Для этой цели используется показатель корреляции рангов для суммарной ранжировки – коэффициент конкордации

где Σd2 – сумма квадратов отклонений индивидуальных сумм рангов от средней индивидуальной суммы рангов; m – число сравниваемых ранжированных рядов; N – численность выборки. W показывает степень согласия ранжированных рядов, и его значения могут колебаться от 0 до 1 (табл. 9).

В данном примере он достаточно высок (W = 0,91) и свидетельствует о единстве мнений внешних экспертов по оценке летных способностей курсантов.

В ряде случаев, когда критерии профессионально-психологической пригодности и успешности обучения не распределяются в вариационный ряд, корреляция между ними устанавливается по наличию нескольких качественных признаков в связи с качественными признаками обучения.

Корреляция между качественными признаками, группируемыми в 4-клеточную корреляционную решетку, определяется c помощью коэффициента ассоциации (ra) Дж. Юла – тетрахорического показателя связи. Когда изучается корреляционная зависимость между несколькими качественными признаками, группируемыми в многоклеточные таблицы, используется коэффициент взаимной сопряженности (К) – полихорический показатель связи.

Таблица 9

Расчет коэффициента конкордации

Таблица 10

Расчет коэффициента ассоциации

Рассмотрим пример вычисления коэффициента ассоциации при изучении связи между такими критериями пригодности, как I и IV группы, и критериями успешности обучения – лучшие и отчисленные:

где a, b, c, d – численности альтернативных признаков (практически неограничены).

В корреляционной решетке (табл. 10) приведены исходные данные для расчетов (x – группа; y – успешность обучения).

Подставляя в формулу соответствующие значения из таблицы, находим величину коэффициента ассоциации (ra = 0,65), который выражается в долях от 0 до 1. Достоверность оценивается по его отношению к средней ошибке, определяемой по формуле

откуда t = 16,25.

Достоверность ra может быть определена также и по специальным таблицам [52].

При изучении корреляционной зависимости между вариационными рядами с отсутствием линейной зависимости более правомерным является вычисление корреляционного отношения, которое измеряет состояние любых, в том числе и нелинейных, связей между признаками.

В отличие от коэффициента корреляции, изучающего двустороннюю связь между x и y, корреляционное отношение (η) показывает только зависимость изменений второго (y) признака от изменений первого (x), или наоборот. Корреляционное отношение – величина относительная, положительная и принимает значение от 0 до 1. Показатели корреляционного отношения обычно не равны между собой – ηy/x ≠ ηx/y. Они определяются по следующим формулам

и

где

Эти формулы можно выразить и в другом виде:

По приведенным формулам удобно определять коэффициенты корреляционного отношения для небольших выборок, а при наличии большого числа наблюдений необходимо предварительно весь материал группировать в вариационные ряды и вносить в корреляционную таблицу.

Рассмотрим вычисление корреляционного отношения на выборке из 10 наблюдений (табл. 11).

Таблица 11

Вычисление корреляционного отношения

Сначала находим коэффициент корреляционного отношения полетов y по грубым ошибкам x, то есть ηy/x, для чего ранжируем выборку по x (значения x расположены в возрастающем порядке сверху вниз). Затем определяем вспомогательные величины для вычисления корреляционного отношения по x и подставляем в формулу, откуда ηy/x = 0,99.

Таким же способном определяем корреляционные отношения грубых ошибок x по полетам y, ранжируя выборку по y и определяем ηy/x.

Для оценки достоверности полученных величин используем формулу

и по специальной таблице [52] находим значение P = 99,9 %.

Вычисление корреляционного отношения на больших выборках после предварительного заполнения корреляционной решетки можно производить по способу произведений, способу условных средних и способу суммирования [141].

Регрессионный анализ. Описанные показатели корреляции позволяют измерять степень связи, направление и форму существующей между ними зависимости. Однако они не дают информации о том, насколько в среднем может измениться в ту или другую сторону один из признаков при изменении другого. Такая информация представляет большой практический интерес для разработки методик психологического отбора, а также изучения влияния специальных методов подготовки на успешность профессионального обучения.

Функция, позволяющая по величине одного признака (x) находить средние (ожидаемые) значения другого признака  связанного с x корреляционно, называется регрессией, а статистический анализ регрессии получил название регрессионного.

1 ... 78 79 80 81 82 83 84 85 86 ... 109
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈