Категории
Самые читаемые
ChitatKnigi.com » 🟠Бизнес » Экономика » Экономика для "чайников" - Шон Флинн

Экономика для "чайников" - Шон Флинн

Читать онлайн Экономика для "чайников" - Шон Флинн
1 ... 78 79 80 81 82 83 84 85 86 ... 129
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Для того чтобы увидеть, как это работает, взгляните на рис. 10.4, где я нарисовал кривые средних совокупных издержек (АТС), средних переменных издержек (AVC) и предельных издержек (МС), а также горизонтальную линию, обозначенную р = MR, указывающую на равенство цены и предельного дохода для этой фирмы, работающей в условиях конкуренции. (Здесь изображен типичный вид этих кривых; мы больше не используем конкретные кривые, которые получились у нас в результате исследований затрат корпорации LemonAid.)

Помимо того, что совокупный доход может быть изображен в виде прямоугольника, вам нужно запомнить, что совокупный доход фирмы, когда ее производительность находится на уровне продукта q*, позволяющем максимизировать прибыль, — это просто цена, умноженная на количество единиц продукта, или TR = р*q*. Точно так же, как мы определяем площадь прямоугольной комнаты, умножая ее длину на ширину, величина совокупного дохода определяется как произведение цены на количество. На рис. 10.4 TR — это прямоугольник с высотой р и шириной q*. Его углы обозначены началом системы координат, точкой р на вертикальной оси, точкой, где линия р — MR пересекает кривую МС, и точкой q* на горизонтальной оси.

Точно так же мы можем использовать прямоугольник для представления совокупных издержек, которые оплачивает фирма, когда производит q* единиц продукта. Для того чтобы построить этот прямоугольник, нужно провести некоторые математические вычисления для преобразования информации, предоставленной кривой средних совокупных издержек (АТС), в то, что мы хотим изобразить графически, т.е. совокупные издержки (ТС).

Чтобы разобраться в этих математических вычислениях, вначале посмотрите на точку В на рис. 10.4. Она показывает средние совокупные издержки (АТС) в расчете на единицу продукции, когда фирма производит уровень продукта q*. Мы видим, что прямоугольник, чья ширина равна q*, а высота задана АТС на уровне продукта q*, действительно отражает совокупные издержки фирмы. Это значит, что ТС равен площади прямоугольника, чьи четыре угла расположены в начале координат, точке А на вертикальной оси, точке В и точке q* на горизонтальной оси.

Главное, что нужно понять из всего вышесказанного, — когда фирма производит на уровне q*, то АТС = TC/q*. Если вы умножите обе стороны этого уравнения на q*, то обнаружите, что АТС х q*= ТС. Это уравнение говорит вам, что ТС действительно равны произведению АТС и q*, или площади прямоугольника с высотой АТС и шириной q*.

Теперь, когда вы поняли, как с помощью площади прямоугольников, которые связаны с кривыми расходов фирмы, могут быть представлены TR и ТС, вас не должен удивлять тот факт, что прибыль фирмы, которая по определению равна TR — ТС, также может быть представлена площадью конкретного прямоугольника. На самом деле прибыль равна площади заштрихованного прямоугольника на рис. 10.4. Это потому, что прибыль — это просто разница между TR и ТС. Поскольку в нашем случае прямоугольник TR больше прямоугольника ТС, фирма получает прибыль, чей размер эквивалентен площади заштрихованного прямоугольника, которая определяется следующим образом: площадь большего прямоугольника TR минус площадь меньшего прямоугольника ТС.

Очень полезно будет провести мысленный эксперимент, используя рис. 10.4. Представьте, что произойдет, если цена р увеличится. Во-первых, заметьте: оптимальное количество, q*, увеличится, поскольку точка пересечения горизонтальной линии р = MR и кривой МС переместится вверх и вправо. Одновременно прямоугольник совокупного дохода увеличится в размерах, как и прямоугольник совокупных издержек. Но какой из них увеличится в размерах быстрее? Прибыль возрастет или сократится?

С помощью графика мы можем подтвердить, что прибыль возрастет — с увеличением цены заштрихованный прямоугольник прибыли увеличится в размерах. Таким образом, повышение цены увеличивает прибыль фирмы. В следующем разделе объясняется, как прибыль может стать отрицательной, если цена станет ниже определенного уровня.

Визуализация убытков

Сравните ситуацию, описанную в предыдущем разделе, с проиллюстрированной на рис. 10.5, где кривые затрат такие же, как и на рис. 10.4, но цена (и, как следствие, предельный доход MR), по которой фирма может продать свой продукт, намного ниже.

Следуя правилу MR = МС для выбора оптимального уровня продукта, фирма примет решение производить количество q*2, где новая, находящаяся ниже, линия р = MR пересекает кривую МС. Но из-за низкой цены, по которой фирма вынуждена продать свой продукт, она не будет иметь возможности получить прибыль. (На рис. 10.5 я обозначил оптимальный уровень производства фирмы q*2, для того, чтобы стало очевидно: оптимальный уровень продукта в том случае, когда цена ниже, отличается от оптимального уровня продукта q* на рис. 10.4, где цена была выше.)

Вы можете оценить убытки, сравнивая прямоугольники TR и ТС, которые получаются в этой ситуации. Поскольку TR=p* q*2, совокупный доход равен площади прямоугольника высотой р и шириной q*2. Следовательно, TR равен площади прямоугольника, чьи четыре угла лежат в начале координат, точке р на вертикальной оси, точке С и точке q*2 на горизонтальной оси. Он меньше, чем прямоугольник ТС, определенный началом координат, точками А, В и q*2. Поскольку площадь прямоугольника совокупных издержек превышает площадь прямоугольника совокупного дохода, фирма терпит убытки, эквивалентные размеру заштрихованной площади на рис. 10.5.

Ситуация, отраженная на рис. 10.5, говорит о том, что хотя менеджер всегда стремится производить уровень продукта при MR = МС, это не обязательно гарантирует прибыль. Проблема заключается в том, что мешают фиксированные издержки. Например, предположим, что некая фирма должна уплатить 1000 долл. месячной ренты. Если месяц уже начался и рента уже уплачена, вы будете производить продукт, для которого MR > МС. Это приведет вас к уровню продукта q*2 на рис. 10.5.

1 ... 78 79 80 81 82 83 84 85 86 ... 129
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈