Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » Механика от античности до наших дней - Ашот Григорьян

Механика от античности до наших дней - Ашот Григорьян

Читать онлайн Механика от античности до наших дней - Ашот Григорьян
1 ... 4 5 6 7 8 9 10 11 12 ... 103
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Замечательно следующее рассуждение Герона: «Некоторые люди думают, что тяжести, лежащие на земле, могут быть сдвинуты с места только путем приложения эквивалентной им силы. Этот взгляд ложен. Итак, докажем, что тяжести, лежащие так, как было сказано, могут быть сдвинуты с места посредством силы, меньшей, чем любая известная, и раскроем причину, почему подобное явление не оказывается сразу приметным. Представим себе, стало быть, что груз лежит на земле и что этот груз равномерный, гладкий и плотный. Пусть плоскость, на которой груз лежит, может быть наклонена в обе стороны, а именно вправо и влево. Пусть сначала она будет наклонена вправо. Тогда оказывается, что данный груз скатывается вправо, ибо естественным для грузов является стремление двигаться вниз, если их ничто не подпирает, препятствуя их движению. Если, далее, наклонная сторона опять поднимается до горизонтальной плоскости и вся плоскость придет в состояние равновесия, то тогда груз пребудет в этом положении. А если она наклонится в другую сторону, т. е. в левую, то и груз будет клонить в ту же сторону, даже при самом незначительном наклоне. Следовательно, груз нуждается не в силе, которая его движет, а в силе, которая его подпирает, препятствуя его движению. Допустим теперь, что груз опять приходит в положение равновесия и не склоняется в какую-либо сторону, — тогда он остается в том же положении и пребывает в покое, пока плоскость не наклонится в какую-нибудь сторону, — в последнем случае и он клонит в ту же сторону. Итак, груз, готовый обратиться к любому направлению, нуждается лишь в незначительной силе, чтобы прийти в движение, и притом в соответствии с силой, которая придает ему наклон. Выходит, что груз может быть приведен в движение любой самой малой силой»{38}.

Герону принадлежат также три трактата по прикладной механике: «Пневматика» — о механизмах, приводимых в действие нагретым или сжатым воздухом или паром, «Об автоматах» — о конструкциях самодвижущихся приборов и «Белопойика» — о конструкциях луков, катапульт и других видов оружия. Из многочисленных механизмов, сконструированных Героном, отметим шар, вращающийся под действием пара, автомат для открывания дверей храма при зажигании огня на алтаре, пожарный насос, водяной орган, механический театр марионеток. В «Пневматике» имеются и теоретические рассуждения: Герон объясняет упругость воздуха и пара соударениями мельчайших частиц, из которых, по его мнению, состоят воздух и пар. Некоторые рассуждения Герона показывают, что, хотя он был знаком с гидростатическими законами Архимеда, физическая причина кажущейся потери веса погруженных в жидкость тел была ему не известна; он считал эту потерю веса абсолютной.

Представителем Александрийской школы был римский архитектор эпохи Августа — Марк Поллион Витрувий (1 в. до н. э.). Десятая книга его знаменитого трактата «Об архитектуре» целиком посвящена механике. Витрувий был строителем-практиком. Поэтому механическая часть его трактата содержит главным образом описание различных механизмов для поднятия тяжестей, а также практических правил и строительных рецептов. Специальный раздел посвящен военным машинам. Витрувий дает следующее определение машины: «Машина есть сочетание соединенных вместе деревянных частей, обладающее огромными силами для передвижения тяжестей»{39}.

В 8-й главе X книги трактата рассматривается принцип действия механизмов, основанный на теории равновесия рычага, которую Витрувий излагает согласно «Механическим проблемам» и Герону, придерживаясь, таким образом, кинематического варианта статики.

Механике посвящена и последняя (VIII) книга «Математического собрания» Паппа Александрийского (III в. н. э.). Папп проводит в ней различие между механикой — теоретической наукой и механикой — практическим искусством. Сочинение Паппа представляет собой в основном компилятивный труд, в который включены разнородные сведения из различных источников. В книге приведено большое число отрывков из сочинений Архимеда, некоторые теоремы геометрической статики, относящиеся к определению положения центров тяжести различных фигур, главным образом трапеции и треугольника. Папп рассматривает приложение геометрической статики к конкретным техническим вопросам, например задачу об определении силы, необходимой для того, чтобы на наклонной плоскости сдвинуть груз, который на горизонтальной плоскости сдвигается данной силой. С другой стороны, в трактат включено описание устройства грузоподъемных машин из «Механики» Герона, однако без изложения принципа их действия.

В книге содержатся и собственные исследования автора, например теоремы об объемах тел вращения, которые он выражает через длину окружности, описываемой центром тяжести вращающейся фигуры (теорема Паппа — Гюльдена).

Сочинения Герона и Паппа показывают, что александрийские ученые I—IV вв. н. э. уделяли значительное внимание как теоретическим основам механики (хотя научный уровень их работ был значительно ниже, чем у Архимеда), так и практической механике, конструированию механизмов, оружия и автоматов.

Одним из основных стимулов разработки принципов кинематики и источников развития кинематических представлений в механике была греческая астрономия.

В вавилонской астрономии положения светил на небесной сфере вычислялись арифметическими методами.

Как мы уже упоминали, представители греческой классической философии (Платон, Аристотель) считали круговое движение, свойственное небесным телам, «совершенным». Поэтому греческие астрономы, обращаясь к кинематико-геометрическому моделированию видимых движений небесных тел, представляли эти сложные движения только в виде комбинации нескольких круговых. Первая попытка такого моделирования — теория вращающихся концентрических сфер, предложенная крупнейшим античным математиком и астрономом Евдоксом Книдским (IV в. до н. э.). Теория Евдокса состоит в следующем: вокруг центра, в котором находится покоящаяся Земля, вращаются 27 концентрических сфер. На внешней сфере расположены «неподвижные» звезды. С помощью остальных сфер Евдокс объясняет движение Солнца, Луны и пяти планет. Каждое из упомянутых небесных тел неразрывно связано с некоторой равномерно вращающейся сферой, объемлющей другую, ось которой находится под известным углом к оси первой. Внутренняя вращающаяся сфера увлекается в своем вращении внешней.

Движение Луны описывается с помощью трех сфер. Внешняя сфера Луны, на которой расположена эклиптика, служит для объяснения суточного движения Луны. Она, как и сфера «неподвижных» звезд, совершает один оборот в сутки вокруг полюсов экватора.

Вторая сфера, на которой расположена наклонная к эклиптике орбита Луны, участвуя в движении первой, вращается вокруг полюсов эклиптики, чем объясняется «отступание узлов» лунной орбиты. Третья сфера, на которой расположена Луна, вращается вокруг полюсов лунной орбиты, участвуя, таким образом, в движении обеих внешних сфер.

Движение планет Евдокс объясняет с помощью четырех сфер. Внешняя сфера, совершающая, как и в случае Луны, одно движение, совпадающее с суточным движением «неподвижных» звезд, служит для объяснения суточного движения планет. Вторая сфера, участвуя в движении первой, совершает оборот вокруг полюсов эклиптики за время, равное периоду обращения планеты. Вращения третьей и четвертой сфер служат для объяснения прямого и возвратного движений планет. Третье вращение, полюсами которого служат две неподвижные точки на эклиптике, совершается перпендикулярно ей. Плоскость четвертого вращения наклонена к плоскости третьего. В результате этих двух движений траектория планеты имеет вид петлеобразной кривой в форме лежащей восьмерки — гиппопеды, большая ось которой расположена на эклиптике.

Центр ее вследствие второго вращения проходит за период обращения планеты всю эклиптику.

С помощью системы Евдокса можно было более или менее удовлетворительно описать движение внешних планет (Юпитера и Сатурна).

Астроном Калипп пытался усовершенствовать эту систему, добавив еще по две сферы для Солнца и Луны и по одной для каждой из планет. Аристотель, добавив «(вращающиеся назад» сферы, при помощи движения которых он рассматривал вращение любой сферы независимо от объемлющей ее, увеличил их число до 56.

Основным недостатком как гипотезы Евдокса, так и ее улучшенных вариантов было то, что, согласно концентрической модели, расстояния планет от Земли предполагаются неизменными.

Другая, более совершенная кинематико-геометрическая модель движения небесных тел была предложена Аполлонием и развита затем Гиппархом и Птолемеем.

Кинематико-геометрическое моделирование движения небесных тел тесно связано с общими успехами кинематического метода в греческой математике. Античные математики часто обращались к кинематическому методу при решении многих задач, связанных с построением и исследованием кривых.

1 ... 4 5 6 7 8 9 10 11 12 ... 103
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈