Ландшафты мозга. Об удивительных искаженных картах нашего мозга и о том, как они ведут нас по жизни - Ребекка Шварцлоуз
Шрифт:
Интервал:
Закладка:
141
Kanjlia S. et al. Sensitive Period for Cognitive Repurposing of Human Visual Cortex. Cerebral Cortex (2018). DOI: 10.1093/cercor/ bhy280.
142
Rutkowski R.G., Weinberger N.M. Encoding of Learned Importance of Sound by Magnitude of Representation Area in Primary Auditory Cortex. Proceedings of the National Academy of Sciences of the United States of America. 102 (2005): 13664–69.
143
Super C.M. Environmental Effects on Motor Development: The Case of “African Infant Precocity”. Developmental Medicine and Child Neurology. 18 (1976): 561–67.
144
Amunts K. et al. Motor Cortex and Hand Motor Skills: Structural Compliance in the Human Brain. Human Brain Mapping. 5 (1997): 206–15.
145
Elbert T. et al. Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science. 270 (1995) 305–7.
146
Hyde K.L. et al. Musical Training Shapes Structural Brain Development. Journal of Neuroscience. 29 (2009): 3019–25.
147
Humphreys G.W., Riddoch J.M. To See but Not to See: A Case Study of Visual Agnosia. London: Lawrence Erlbaum Associates, 1987.
148
Humphreys, Riddoch. To See but Not to See.
149
Humphreys, Riddoch. To See but Not to See.
150
Humphreys, Riddoch. To See but Not to See.
151
Warrington E., Shallice T. Category Specific Semantic Impairments. Brain. 107 (1984): 829–54; Biran I., Coslett H.B. Visual Agnosia. Current Neurology and Neuroscience Reports. 3 (2003): 508–12.
152
Kanwisher N. et al. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. Journal of Neuroscience. 17 (1997): 4302–11.
153
Kanwisher N. The Quest for the FFA and Where It Led. Journal of Neuroscience. 37 (2017): 1056–61.
154
Kennerknecht I. et al. Prevalence of Hereditary Prosopagnosia (HPA) in Hong Kong Chinese Population. American Journal of Medical Genetics Part A. 146A (2008): 2863–70.
155
Song S. et al. Local but Not Long-Range Microstructural Differences of the Ventral Temporal Cortex in Developmental Prosopagnosia. Neuropsychologia. 78 (2015): 195–206.
156
Parvizi J. et al. Electrical Stimulation of Human Fusiform Face-Selective Regions Distorts Face Perception. Journal of Neuroscience. 32 (2012): 14915–20; в тексте использованы цитаты из фильмов.
157
Трип – психоделическое состояние с измененным восприятием и осознанием происходящего.
158
Pitcher D. et al. The Role of the Occipital Face Area in the Cortical Face Perception Network. Experimental Brain Research. 209 (2011): 481–93.
159
Epstein R., Kanwisher N. A Cortical Representation of the Local Visual Environment. Nature. 392 (1998): 598–601.
160
Aguirre G.K., D’Esposito M. Topographical Disorientation: A Synthesis and Taxonomy. Brain. 122 (1999) 1613–28.
161
Mégevand P. et al. Seeing Scenes: Topographic Visual Hallucinations Evoked by Direct Electrical Stimulation of the Parahippocampal Place Area. Journal of Neuroscience. 34 (2014): 5399–405.
162
Downing P.E. et al. A Cortical Area Selective for Visual Processing of the Human Body. Science. 293 (2001): 2470–73.
163
Downing P.E., Peelen M.V. Body Selectivity in Occipitotemporal Cortex: Causal Evidence. Neuropsychologia. 83 (2016): 138–48.
164
Schwarzlose R.F. et al. Separate Face and Body Selectivity on the Fusiform Gyrus. Journal of Neuroscience. 25 (2005): 11055–59.
165
Moro V. et al. The Neural Basis of Body Form and Body Action Agnosia. Neuron. 60 (2008): 235–46.
166
Lewis J.W. Cortical Networks Related to Human Use of Tools. Neuroscientist. 12 (2006): 211–31.
167
Cohen L. et al. Language-Specific Tuning of Visual Cortex? Functional Properties of the Visual World Form Area. Brain. 125 (2002): 1054–69.
168
Konkle T., Caramazza A. Tripartite Organization of the Ventral Stream by Animacy and Object Size. Journal of Neuroscience. 33 (2013): 10235–42.
169
Gibson J.J. The Ecological Approach to Visual Perception. Boston: Houghton Mifflin, 1979.
170
Arcaro M.J., Livingstone M.S. A Hierarchical, Retinotopic Proto-organization of the Primate Visual System at Birth. eLife. 6 (2017): e26196.
171
Smith L.B. et al. The Developing Infant Creates a Curriculum for Statistical Learning. Trends in Cognitive Sciences. 22 (2018): 325–36.
172
Tsao D.Y. et al. Faces and Objects in Macaque Cerebral Cortex. Nature Neuroscience. 6 (2003): 989–95.
173
Livingstone M.S. et al. Development of the Macaque Face-Patch System. Nature Communications. 8 (2017): 10.1038/ncomms14897.
174
Arcaro M.J. et al. Seeing Faces Is Necessary for Face-Domain Formation. Nature Neuroscience. 20 (2017): 1404–12.
175
Deen B. et al. Organization of High Level Visual Cortex in Human Infants. Nature Communications. 8 (2017): 13995.
176
Grill-Spector K. et al. Developmental Neuroimaging of the Ventral Visual Cortex. Trends in Cognitive Sciences. 12 (2008): 152–62; Golarai G. et al. Experience Shapes the Development of Neural Substrates of Face Processing in Human Ventral Temporal Cortex. Cerebral Cortex. 27 (2015): bhv314.
177
Le Grand R. et al. Expert Face Processing Requires Visual Input to the Right Hemisphere During Infancy. Nature Neuroscience. 6 (2003): 1108–12.
178
Fausey C.M. et al. From Faces to Hands: Changing Visual Input in the First Two Years. Cognition. 152 (2016): 101–7.