Под знаком кванта. - Леонид Иванович Пономарёв
Шрифт:
Интервал:
Закладка:
В обоих случаях из элемента с зарядом ядра Ζ образуется элемент Υ с зарядом ядра Ζ+1, но изотопы при этом получаются разные: в опытах Ферми — с массовым числом N+1, а в опытах Жолио-Кюри — с N+3. И, конечно, если у Жолио-Кюри облученная α-частицами мишень испускала позитроны, то у Ферми та же мишень, облученная нейтронами, испускала электроны.
Например, при облучении алюминия у Жолио-Кюри получалось:
а у Ферми:
(Земная кора на 28 % состоит из смеси изотопов кремния; из них 2814Si составляет 92,2 %, 2914Si — 4,7 % и 3014Si — 3,1 %.)
Достаточно очевидно, что способ Ферми получения новых изотопов предпочтительнее: он проще и универсальнее. В короткое время «мальчики» Ферми облучили 68 элементов и в 47 из них наблюдали искусственную радиоактивность, то есть синтезировали сразу полсотни новых изотопов.
Но главное их открытие состояло не в этом: 22 октября 1934 г. они вдруг с удивлением обнаружили, что нейтроны в сотни раз эффективнее захватываются ядрами атомов, если между мишенью и источником нейтронов поместить кусок парафина либо же опустить мишень под воду (благо, во дворе института в Риме был бассейн с золотыми рыбками). Их удивление длилось целых два часа — до тех пор, пока Ферми с присущим ему изяществом не набросал контуры нового физического явления. Суть его объяснения проста. Молекулы воды Н2О состоят из кислорода и водорода, а масса нейтрона практически равна массе протона. Поэтому при столкновениях нейтрона с ядрами водорода он быстро замедляется — в десятки раз быстрее, чем при столкновении с тяжелыми ядрами,— а после этого легко вступает в ядерные реакции.
Удивление обычно является следствием столкновения неожиданных фактов с инерцией мышления. За много лет физики привыкли к мысли, что ядро — это хоть и неосязаемое, но весьма прочное нечто, и чтобы его изменить, необходимо как можно сильнее разогнать снаряд — будь то α-частица или протон. Для этой цели изобрели даже ускорители. А для нейтрона все оказалось строго наоборот: чем медленнее он двигался, тем охотнее поглощался ядрами. Причин тому две: во-первых, он не отталкивается, а притягивается ядрами, и, во-вторых, он подчиняется законам квантовой механики.
Открытие ядерных реакций, вызванных замедленными нейтронами, не выглядит столь эффектно, как открытие самого нейтрона или искусственной радиоактивности, однако именно ему суждено было великое будущее: без него нельзя ни запустить ядерный реактор, ни понять принцип его работы.
Участники этого исторического эксперимента безошибочно почувствовали его значительность: в тот же вечер 22 октября 1934 г. они собрались на квартире Ферми и глубокой ночью закончили статью под названием «Влияние водородосодержащих веществ на радиоактивность, наведенную нейтронами». В 1938 г. «за открытие искусственной радиоактивности, вызванной бомбардировкой медленными нейтронами», Энрико Ферми был удостоен Нобелевской премии.
ДЕЛЕНИЕ ЯДЕР
Среди множества элементов, которые «папа Ферми» (такой же непогрешимый в науке, как папа римский в вопросах веры) со своими «мальчиками» облучил медленными нейтронами в то памятное лето 1934 г., был и уран. Подобно большинству других элементов, после облучения нейтронами он становился β-активным, то есть испускал электроны. Это-то и было особенно интересным: ведь уран в то время занимал последнее место в таблице Д. И. Менделеева. Заряд его ядра равен 92, поэтому если ядро урана захватит нейтрон и затем испустит электрон, то его заряд увеличится на единицу, а уран превратится в следующий за ураном «трансурановый элемент» согласно схеме реакции
n+23892U → 23992U→ 23993X + e + ˜ν.
Из опытов Ферми такой вывод следовал настолько естественно, что даже без детальной его проверки он сразу же стал научной сенсацией и достоянием газет. В этом согласном хоре раздавались, однако, и критические голоса, о которых вспомнили лишь несколько лет спустя: немецкие радиохимики супруги Ида и Вальтер Ноддак, открывшие элемент рений, уже в 1934 г. допускали, что Ферми видел не образование трансурановых элементов, а осколки ядра урана. Но большинство радиохимиков еще не были готовы к таким радикальным заключениям и принялись искать «трансурановые» элементы.
Немецкий радиохимик Отто Ган (1879—1968), ученик Рамзая и Резерфорда, в течение многих лет терпеливо и тщательно распутывал цепочки радиоактивных превращений, открыл элемент протактиний и изомерию ядер. В 1937 г. совместно с Лизе Мейтнер (1878—1968) и Фрицем Штрассманом (1902—1980) он решил повторить опыты Ферми по облучению урана нейтронами. Он наблюдал при этом обычную β-активность с периодом полураспада 23 мин, и, поскольку эту активность никак не удавалось отделить от урана, они согласились с Ферми, что это действительно β-распад 23992U с превращением его в новый неизвестный элемент 23993Х. Но в отличие от Ферми они были профессиональными химиками и, прежде чем объявить о своем открытии, хотели найти химические доказательства образования нового элемента. Последовала новая серия экспериментов, которая летом 1938 г. была прервана: Лизе Мейтнер, спасаясь от преследований нацистов, эмигрировала в Швецию.
Осенью 1938 г. Ган и Штрассман возобновили опыты, используя при этом все тот же метод «реакций с носителем». Облучив уран нейтронами, они его растворяли, добавляли в раствор соли бария и затем осаждали барий. Оказалось, что вместе с барием в осадок выпадает и β-активное вещество. Ган и Штрассман решили, что это радий-231, который мог бы образоваться из 23992U путем двух последовательных α-распадов и который по своим химическим свойствам весьма похож на барий. Но что-то мешало им немедленно сообщить об этом заключении, да к тому же в аналогичных опытах Ирэн Кюри и Павле Савича происходило тоже нечто непонятное: они как будто наблюдали лантан. В конце концов, после бесконечных проверок, Ган и Штрассман убедились, что их β-активность от радия отделить можно, но отделить ее от бария никакими силами не удается. За этот результат Отто Ган, радиохимик с тридцатилетним стажем, мог поручиться. И все же сомнения оставались, и в своей статье Ган и Штрассман честно в них признавались: «Как химики мы должны заменить символы Ra, Ас и Th в нашей прежней схеме на Ba, La и Се. Как «химики-ядерщики», в определенном смысле близкие физике, мы еще не можем решиться на этот шаг, противоречащий всем прежним представлениям ядерной физики».
Нам трудно понять сейчас их недоумение: уже в школе мы знаем, что ядро урана делится, и не находим в этом ничего странного. Попытаемся, однако, взглянуть