Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - Виктор Майер-Шенбергер
Шрифт:
Интервал:
Закладка:
Основная трудность состояла в выборе: использовать все данные или только их часть. Безусловно, разумнее всего получать полный набор данных всех проводимых измерений. Но это не всегда выполнимо при огромных масштабах. И как выбрать образец? По мнению некоторых, лучший выход из ситуации — создавать целенаправленные выборки, которые представляли бы полную картину. Однако в 1934 году польский статистик Ежи Нейман ярко продемонстрировал, как такие выборки приводят к огромным ошибкам. Оказалось, разгадка в том, чтобы создавать выборку по принципу случайности.[25]
Работа статистиков показала, что на повышение точности выборки больше всего влияет не увеличение ее размера, а элемент случайности. На самом деле, как ни странно, случайная выборка из 1100 ответов отдельных лиц на бинарный вопрос («да» или «нет») имеет более чем 97%-ную точность при проецировании на все население. Это работает в 19 из 20 случаев, независимо от общего размера выборки, будь то 100 000 или 100 000 000.[26] И трудно объяснить математически. Если вкратце, то с определенного момента роста данных предельное количество новой информации, получаемой из новых наблюдений, становится все меньше.
То, что случайность компенсирует размер выборки, стало настоящим открытием, проложившим путь новому подходу к сбору информации. Данные можно собирать с помощью случайных выборок по низкой себестоимости, а затем экстраполировать их с высокой точностью на явление в целом. В результате правительства могли бы вести небольшие переписи с помощью случайных выборок ежегодно, а не раз в десятилетие (что они и делали). Бюро переписи населения США, например, ежегодно проводит более двухсот экономических и демографических исследований на выборочной основе, не считая переписи раз в десять лет для подсчета всего населения. Выборки решали проблему информационной перегрузки в более раннюю эпоху, когда собирать и анализировать данные было очень трудно.
Новый метод быстро нашел применение за пределами государственного сектора и переписей. В бизнесе случайные выборки использовались для обеспечения качества производства, упрощая процессы контроля и модернизации и к тому же снижая расходы на них. Поначалу для всестороннего контроля качества требовалось осматривать каждый продукт, выходящий с конвейера. Сейчас достаточно случайной выборки тестовых экземпляров из партии продукции. По сути, случайные выборки уменьшают проблемы с большими данными до более управляемых. Кроме того, они положили начало опросам потребителей в сфере розничной торговли, фокус-группам в политике, а также преобразовали большинство гуманитарных наук в социальные.
Случайные выборки пользовались успехом. Они же сформировали основу для современных масштабных измерений. Но это лишь упрощенный вариант — еще одна альтернатива сбора и анализа полного набора данных, к тому же полная недостатков. Мало того что ее точность зависит от случайности при сборе данных выборки — достичь этой случайности не так-то просто. Если сбор данных осуществляется с погрешностью, результаты экстраполяции будут неправильными.
Так, например, одна из ранних ошибок, связанных с выборкой, произошла в 1936 году, когда еженедельный журнал Literary Digest провел опрос двух миллионов избирателей и ошибочно спрогнозировал блестящую победу Республиканской партии на президентских выборах США. (Как оказалось, действующий президент Франклин Рузвельт, представитель Демократической партии, победил Альфреда Лэндона с перевесом в 523 голоса к 8 в коллегии выборщиков.) И дело было не в том, что выборка оказалась слишком маленькой, — не хватало элемента случайности. Выбирая участников опроса, специалисты Literary Digest использовали список подписчиков и телефонные каталоги, не понимая, что обе группы — и подписчики, и телефонные абоненты — относятся к более состоятельной категории населения и гораздо вероятнее проголосуют за республиканцев.[27] С этой задачей можно было бы справиться гораздо лучше и дешевле, используя часть выборки, но сформированную именно случайным образом.
Не так давно нечто подобное произошло в процессе опросов, связанных с выборами. Опросы проводились с помощью стационарных телефонов. Выборка оказалась недостаточно случайной из-за погрешности, вызванной тем, что люди, которые пользуются исключительно мобильными телефонами (более молодая и либеральная категория населения), не брались в расчет. Это привело к неправильным прогнозам результатов выборов. В 2008 году в период президентских выборов между Бараком Обамой и Джоном Маккейном главные организации по проведению анкетного опроса населения — Gallup, Pew и ABC/Washington Post — обнаружили разницу в один-три пункта между опросами с учетом пользователей мобильных телефонов и без них. С учетом напряженности гонки это была огромная разница.[28]
* * *
Большинство неудобств связаны с тем, что случайную выборку трудно масштабировать, поскольку разбивка результатов на подкатегории существенно увеличивает частоту ошибок. И это понятно. Предположим, у вас есть случайная выборка из тысячи людей и их намерений проголосовать на следующих выборах. Если выборка достаточно случайна, вполне вероятно, что настроения людей в рамках выборки будут разниться в пределах 3%. Но что если плюс-минус 3% — недостаточно точный результат? Или нужно разбить группу на более мелкие подгруппы по половому признаку, географическому расположению или доходу? Или если нужно объединить эти подгруппы в целевую группу населения?
Допустим, в общей выборке из тысячи избирателей подгруппа «обеспеченных женщин из северо-восточного региона» составила гораздо меньше сотни. Используя лишь несколько десятков наблюдений, невозможно точно прогнозировать, какого кандидата предпочтут все обеспеченные женщины в северо-восточном регионе, даже если случайность близка к идеальной. А небольшие погрешности в случайности выборки сделают ошибки еще более выраженными на уровне подгруппы.
Таким образом, при более внимательном рассмотрении интересующих нас подкатегорий данных выборка быстро становится бесполезной. То, что работает на макроуровне, не подходит для микроуровня. Выборка подобна аналоговой фотопечати: хорошо смотрится на расстоянии, но при ближайшем рассмотрении теряется четкость деталей.
Далее, выборка требует тщательного планирования и реализации. Данные выборки не смогут дать ответы на новые вопросы, если они не продуманы заранее. Поэтому выборка хороша в качестве упрощенного варианта, не более. В отличие от целого набора данных, выборка обладает недостаточной расширяемостью и эластичностью, благодаря которым одни и те же данные можно повторно анализировать совершенно по-новому — не так, как планировалось изначально при сборе данных.
Рассмотрим анализ ДНК. Формируется новая отрасль индивидуального генетического секвенирования, что обусловлено грандиозным падением стоимости технологии и многообещающими медицинскими возможностями. В 2012 году цена декодирования генома упала ниже 1000 долларов США — неофициальной отраслевой отметки, при которой технология приобретает массовый характер. Так, начиная с 2007 года стартап Кремниевой долины 23andme[29] стал предлагать анализ ДНК всего за пару сотен долларов. Этот анализ позволяет выявить особенности генетического кода человека, которые повышают его предрасположенность к развитию определенных заболеваний, например рака молочной железы или проблем с сердцем. А объединяя информацию о ДНК и здоровье своих клиентов, 23andme рассчитывает выявить новые закономерности, которые невозможно обнаружить другим способом.
Компания секвенирует крошечную часть ДНК человека из нескольких десятков участков, которые являются «маркерами». Они указывают на определенную генетическую слабость и представляют собой лишь выборку всего генетического кода человека. При этом миллиарды пар оснований ДНК остаются несеквенированными. В результате 23andme может ответить только на те вопросы, которые связаны с заданными маркерами. При обнаружении нового маркера потребуется еще раз секвенировать ДНК человека (точнее, его соответствующую часть). Работа с выборкой, а не целым набором данных имеет свои недостатки: позволяя проще и быстрее находить нужные данные, она не в состоянии ответить на вопросы, которые не были поставлены заранее.
Легендарный руководитель компании Apple Стив Джобс выбрал другой подход к борьбе против рака, став одним из первых людей в мире, просеквенировавших всю свою ДНК, а также ДНК своей опухоли. Это обошлось ему в шестизначную сумму, которая в сотни раз превышала обычный тариф 23andme. Зато Стив Джобс получил не просто выборку или набор маркеров, а целый набор данных, содержащий весь генетический код.
При лечении среднестатистического онкобольного врачам приходится рассчитывать, что ДНК пациента достаточно похожа на пробу, взятую для исследования. А у команды врачей Стива Джобса была возможность подбирать препараты, ориентируясь на их эффективность для конкретного генетического материала. Всякий раз, когда один препарат становился неэффективным из-за того, что рак мутировал и стал устойчивым к его воздействию, врачи могли перейти на другой препарат, «перескакивая с одной кувшинки на другую», как говорил Стив Джобс. В то время он язвительно заметил: «Я стану одним из первых, кто сумеет обойти рак, или одним из последних, кто умрет от него». И хотя его предсказание, к сожалению, не сбылось, сам метод получения всего набора данных (а не просто выборки) продлил жизнь Стива Джобса на несколько лет.[30]