Красота в квадрате - Алекс Беллос
Шрифт:
Интервал:
Закладка:
Один
Независимое, сильное, честное, храброе, понятное, одинокое
Два
Осмотрительное, мудрое, красивое, ранимое, открытое, доброжелательное, спокойное, чистое, гибкое
Три
Динамичное, теплое, дружелюбное, коммуникабельное, напыщенное, мягкое, раскованное, претенциозное
Четыре
Вальяжное, нестандартное, основательное, надежное, многогранное, прагматичное, представительное
Пять
Уравновешенное, важное, остроумное, толстое, властное (но не слишком), счастливое
Шесть
Жизнерадостное, чувственное, уступчивое, мягкое, сильное, храброе, искреннее, смелое, скромное
Семь
Магическое, непреложное, умное, неуклюжее, самонадеянное, мужественное
Восемь
Мягкое, женственное, доброе, рассудительное, упитанное, основательное, чувственное, притягательное, одаренное
Девять
Спокойное, ненавязчивое, беспощадное, не имеющее принадлежности к какому-либо полу, профессиональное, мягкое, великодушное
Десять
Прагматичное, логичное, опрятное, обнадеживающее, честное, выносливое, простодушное, рассудительное
Одиннадцать
Вероломное, способное подражать звукам, благородное, мудрое, простодушное, дерзкое, выносливое, элегантное
Двенадцать
Податливое, героическое, величественное, крепкое, покладистое, бесконфликтное
Тринадцать
Неуклюжее, неустойчивое, творческое, честное, загадочное, нелюбимое, «темная лошадка»
Не нужно быть голливудским сценаристом, чтобы распределить роли так: мистер Один — отличный романтический персонаж, мисс Двойка — классическая главная героиня. Хотя этот список кажется нелепым, все же в нем есть определенный смысл. Кроме того, в нем видны прочно укоренившиеся ассоциации единицы с мужскими качествами, а двойки — с женскими.
Участие в интернет-опросе было абсолютно добровольным, а это значит, что большинство респондентов испытывали сильную эмоциональную привязанность к тем или иным числам. Ну а что же можно сказать обо всех остальных?
Возьмем в качестве примера число 44.
Вам оно нравится? Не нравится? Вы к нему равнодушны?
Дэн Кинг и Крис Янишевски, с которыми мы уже встречались во время обсуждения шампуня Zinc 24, провели эксперимент, в ходе которого респонденты должны были высказать свое отношение к каждому числу от 1 до 100: нравится им оно, не нравится, или они не испытывают к нему никаких эмоций [26]. Затем был составлен рейтинг чисел этой группы в порядке снижения их популярности.
Как показали результаты эксперимента, такую постановку вопроса нельзя считать неуместной. Наши симпатии по отношению к числам подчиняются четкой закономерности, что прекрасно видно на теплокарте, где числа от 1 до 100 представлены квадратами. (В верхнем ряду квадратов сетки находятся числа от 1 до 10, во втором ряду — от 11 до 20 и т. д.) Черными квадратами обозначены числа, получившие наибольшее количество голосов (первые двадцать позиций в рейтинге); белыми — «самые нелюбимые» числа (последние двадцать позиций в рейтинге); числа с промежуточными результатами представлены квадратами разных оттенков серого.
На этой теплокарте прослеживаются четкие тенденции. Черные квадраты сосредоточены главным образом в верхней части сетки, а это говорит о том, что в среднем люди отдают предпочтение небольшим числам. Диагональ с наклоном влево показывает, что двузначные числа с двумя одинаковыми цифрами тоже вызывают у людей симпатии: мы любим закономерности. Однако самое удивительное то, что четыре белых столбца свидетельствуют о непопулярности чисел, заканчивающихся на 1, 3, 7 и 9. Как уже упоминалось выше, Кинг и Янишевски считают, что числа, представляющие собой результат простых арифметических операций (например, числа, которые встречаются в таблице умножения), более узнаваемы и легче обрабатываются мозгом, поэтому они больше нравятся людям. Все без исключения четные числа и числа, заканчивающиеся на 5, делятся без остатка, тогда как многие числа, заканчивающиеся на 1, 3, 7 и 9, ни на что не делятся.
В ходе аналогичного исследования Маришка Миликовски из Амстердамского университета предложила участникам оценить числа от 1 до 100 по трем критериям: хорошие — плохие, тяжелые — легкие, возбудимые — спокойные [27]. Когда опрашиваемых попросили спроецировать на числа те или иные свойства, не имеющие отношения к математике, ответы и на этот раз оказались на удивление обоснованными. Я представил результаты данного эксперимента в виде теплокарт.
Здесь тоже отчетливо видны определенные закономерности. Белые столбцы сетки «Хорошие — плохие числа» показывают, что респонденты считают самыми плохими числа, заканчивающиеся на 3, 7 и 9, — что неудивительно, поскольку мы уже убедились, что такие числа нравятся людям меньше всего. В случае оценки по шкале «Тяжелые — легкие числа» основная масса черных квадратов сосредоточена в нижней части сетки; это говорит о том, что чем больше число, тем более тяжелым оно кажется. В сетке «Возбудимые — спокойные числа» закономерность не сразу бросается в глаза, но если присмотреться внимательно, то становится очевидным, что столбцы, соответствующие нечетным числам, гораздо темнее столбцов с четными числами. Следовательно, нечетные числа считаются возбудимыми, тогда как четные — спокойными. Мы легко проецируем на числа нематематические свойства, отображающие количественные характеристики чисел, особенно их величину и кратность.
Предпоследняя сетка — это теплокарта рейтинга чисел, составленного по результатам интернет-опроса, на которой 20 самых популярных чисел представлены черными квадратами и т. д. Последняя сетка отображает результаты еще одного интернет-опроса, в ходе которого я предложил участникам в произвольном порядке выбрать число от 1 до 100. Здесь двадцать самых популярных чисел тоже представлены черными квадратами. Интересно, что эти две теплокарты очень похожи друг на друга: когда нас просят назвать понравившееся число, а также первое число, пришедшее нам в голову, мы склонны называть одни и те же числа. Как ни странно, в большинстве случаев наши любимые числа не совпадают с числами, которые нам нравятся или которые мы считаем самыми хорошими. Симпатия и любовь — разные вещи.
Эти теплокарты сразу же напомнили мне о Джерри Ньюпорте — чемпионе мира по устному счету и бывшем таксисте, с которым я встречался в Аризоне. Джерри рассказывал, что когда он видит четырех- или пятизначное число, то сразу же «отсеивает» простые числа. Другими словами, сначала Джерри определяет, делится ли это число на 2, затем на 3, а потом на 5, 7, 11 и т. д., чтобы найти его простые делители.
Например:
2761 = 11 × 251
2762 = 2 × 1381
2763 = 3 × 3 × 307
Благодаря этим теплокартам я понял, что мы действительно отсеиваем простые числа. Ниже представлены те же теплокарты, но в них простые числа отмечены звездочками. Они и впрямь похожи на решето! В теплокартах «Самые любимые числа» и «Хорошие — плохие числа» простые числа почти всегда попадают в белые квадраты, как будто проваливаются через отверстия в металлической сетке. Напротив, в теплокартах «Возбудимые — спокойные числа», «Самые любимые числа» и «Произвольно выбранные числа» простые числа обозначены черными и серыми квадратами. Эти сетки напоминают решето, предназначенное для вылавливания простых чисел. Следовательно, простые числа — это очень важный элемент внутренних представлений о числах, причем не только для таких гениев, как Джерри Ньюпорт, но и для всех нас. Наш мозг всегда настроен на восприятие арифметических истин.
Числа атакуют нас постоянно. Они взывают к нам с часов, телефонов, газетных страниц, компьютерных мониторов, дорожных знаков, этикеток, автобусных остановок, адресов, номерных знаков, рекламных щитов, книг и постоянно воздействуют на наши нейроны. Внимательно присмотревшись к ним, мы обнаруживаем удивительные закономерности.
Теплокарты, на которых простые числа отмечены звездочками
2. Длинный хвост закона
В 1085 году Вильгельм Завоеватель приказал провести в Англии перепись. Он хотел знать, сколько людей живет на его землях, кто эти люди, какое у них имущество, какой доход они получают и, что самое главное, какие налоги должны платить. Он разослал своих представителей по всему королевству, и его приказ был выполнен настолько тщательно, что в летописи Anglo-Saxon Chronicle («Англосаксонские хроники») появилась запись: «Ни одного быка, ни одной коровы и ни одной свиньи не осталось неучтенной».