Категории
Самые читаемые
ChitatKnigi.com » 🟢Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ЛИ) - БСЭ БСЭ

Большая Советская Энциклопедия (ЛИ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ЛИ) - БСЭ БСЭ
1 ... 65 66 67 68 69 70 71 72 73 ... 190
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

  Однородные системы Л. у. можно решать таким же способом. Решения их обладают тем свойством, что сумма, разность и вообще любая линейная комбинация решений (рассматриваемых как n-мерные векторы) также будет решением системы. Другими словами: совокупность всех решений однородной системы Л. у. образует линейное подпространство n-мерного векторного пространства. Систему решений, которые сами линейно независимы и позволяют выразить любое другое решение в виде их линейной комбинации (т. е. базис линейного подпространства), называют фундаментальной системой решений однородной системы Л. у.

  Между решениями системы Л. у. (4) и соответствующей однородной системы Л. у. (т. е. уравнений с теми же коэффициентами при неизвестных, но со свободными членами, равными нулю) существует простая связь: общее решение неоднородной системы получается из общего решения однородной системы прибавлением к нему какого-либо частного решения неоднородной системы Л. у.

  Большой наглядности изложения в теории Л. у. можно добиться, используя геометрический язык. Привлекая при этом к рассмотрению линейные операторы в векторных пространствах (рассматривая уравнения вида Ax = b, А — линейный оператор, х и b — векторы), легко установить связь рассматриваемых алгебраических Л. у. с Л. у. в бесконечномерных пространствах (системы Л. у. с бесконечным числом неизвестных), в частности с Л. у. в функциональных пространствах, например линейные дифференциальные уравнения, линейные интегральные уравнения (см. Интегральные уравнения) и др.

  Применение правила Крамера при практическом решении большого числа Л. у. может встретить значительные трудности, т. к. нахождение определителей высокого порядка связано со слишком большими вычислениями. Были поэтому разработаны различные методы численного (приближённого) решения систем Л. у. (см. Численное решение уравнений).

  Лит.: Энциклопедия элементарной математики, под ред. П. С. Александрова [и др.], кн. 2, М. — Л., 1951; Фаддеев Д. К., Фаддеева В. Н., Вычислительные методы линейной алгебры, 2 изд., М. — Л., 1963.

Линейно-ленточной керамики культура

Лине'йно-ле'нточной кера'мики культу'ра, археологическая культура эпохи раннего неолита (конец 5 — начало 4-го тыс. до н. э.), распространённая в Средней Европе. Является частью дунайских культур. Характеризуется единообразной керамикой сферических и полусферических форм, украшенной орнаментом из лент, состоящих из 2—3 углублённых линий (S-образные спирали, меандры). Линии иногда пересечены ямками («нотная керамика»). Из орудий характерны колодкообразные топоры. Известны крупные поселения этой культуры: Кёльн-Линденталь, Билани (Чехия), Флорешты (Молдавская ССР), состоящие из больших столбовых домов и землянок. Население занималось земледелием (пшеница, ячмень) и скотоводством (крупный и мелкий рогатый скот, свиньи).

  Лит.: Пассек Т. С., Черныш Е. К., Памятники культуры линейно-ленточной керамики на территории СССР, М., 1963; Hoffman Е., Die Kultur der Bandkerarnik in Sachsen, Tl 1 — Die Kerarnik, B., 1963.

  В. С. Титов.

Линейные войска

Лине'йные войска', 1) в 18—19 вв. в армиях различных государств Л. в. называли тяжёлую (линейную) пехоту, действовавшую в сомкнутом строю и наносившую главный удар, в отличие от лёгкой пехоты, которая действовала в рассыпном строю и выполняла вспомогательные задачи. Линейной иногда называлась также тяжёлая кавалерия.

  2) Войска в русской армии, охранявшие главным образом пограничные укрепленные линии. Л. в. появились в 1804. К 1856 было 84 линейных батальона: 18 Грузинских, 16 Черноморских, 13 Кавказских, 12 Финляндских, 10 Оренбургских и 15 Сибирских. Все они (кроме Черноморских) сводились в пехотные бригады (по 5—7 батальонов), а Финляндские, Оренбургские и Сибирские, кроме того, и в пехотные дивизии. В 1858 Грузинские и Черноморские батальоны были переименованы в Кавказские, а в 1867 Оренбургские и часть Сибирских — в Туркестанские. К началу 20 в. все линейные войска были переформированы в стрелковые и резервные. В 1832—60 существовало Кавказское линейное казачье войско.

Линейные дифференциальные уравнения

Лине'йные дифференциа'льные уравне'ния, дифференциальные уравнения вида

  y(n) + p1(x) у(n-1) + ... + pn(x)y = f(x), (1)

  где у = y(x) — искомая функция, y(n), у(n-1),..., y' — её производные, a p1(x), p2(x),..., pn(x) (коэффициенты) и f(x) (свободный член) — заданные функции (см. Дифференциальные уравнения). В уравнение (1) искомая функция у и её производные входят в 1-й степени, т. е. линейно, поэтому оно называется линейным. Если f(x) º 0, то уравнение (1) называется однородным, в противном случае — неоднородным. Общее решение y0 = y0(x) однородного Л. д. у. при условии непрерывности его коэффициентов pk(x) выражается формулой:

  y0 = C1y1(x) + С2у2(х) + ... + Cnyn(x),

  где C1, C2,..., Cn — произвольные постоянные и y1(x), у2(х),..., yn(x) — линейно независимые (см. Линейная зависимость) частные решения, образующие т. н. фундаментальную систему решений. Критерием линейной независимости решений служит неравенство нулю (хотя бы в одной точке) определителя Вроньского (вронскиана):

   (2)

  Общее решение у = у(х) неоднородного Л. д. у. (1) имеет вид:

  y = y0+Y,

  где y0 = y0(x) — общее решение соответствующего однородного Л. д. у. и Y = Y(x) — частное решение данного неоднородного Л. д. у. Функция Y(x) может быть найдена по формуле:

  ,

  где yk(x) — решения, составляющие фундаментальную систему решений однородного Л. д. у., и Wk(x) — алгебраическое дополнение элемента yk(n-1)(x) в определителе (2) Вроньского W(x).

  Если коэффициенты уравнения (1) постоянны: pk(x) = ak (k = 1, 2, ..., n), то общее решение однородного уравнения выражается формулой:

  ,

  где ak ± ibk (k = 1, 2, ..., m; ) — корни т. н. характеристического уравнения:

  ln + a1ln-1 + ... +an = 0,

  nk — кратности этих корней и Cks, Dks — произвольные постоянные.

  Пример. Для Л. д. у. y’’’ + у = 0 характеристическое уравнение имеет вид: l3 + 1 = 0. Его корнями являются числа:

  l1 = -1; l2 =  и l3 =

  Следовательно, общее решение этого уравнения таково:

  .

  Системы Л. д. у. имеют вид:

   (3)

  (j = 1, 2, ..., n).

  Общее решение однородной системы Л. д. у. [получаемой из системы (3), если все fj(x) º 0] даётся формулами:

   

  (j = 1, 2, ..., n)

  где yj1, yj2, ..., yjn — линейно независимые частные решения однородной системы (т. е. такие, что определитель ½yjk(x)½ ¹ 0 хотя бы в одной точке).

  В случае постоянных коэффициентов pjk(x) = ajk частные решения однородной системы следует искать в виде:

   

  (j = 1, 2, ..., n),

  где Ajs — неопределённые коэффициенты, a lk — корни характеристического уравнения

   

  и mk — кратность этих корней. Полный анализ всех возможных здесь случаев проводится с помощью теории элементарных делителей [см. Нормальная (жорданова) форма матриц].

  Для решения Л. д. у. и систем Л. д. у. с постоянными коэффициентами применяются также методы операционного исчисления.

1 ... 65 66 67 68 69 70 71 72 73 ... 190
Перейти на страницу:
Открыть боковую панель
Комментарии
Ксения
Ксения 25.01.2025 - 12:30
Неплохая подборка книг. Прочитаю все однозначно.
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее