Категории
Самые читаемые
ChitatKnigi.com » 🟢Разная литература » Прочее » Метафизика - Аристотель

Метафизика - Аристотель

Читать онлайн Метафизика - Аристотель
1 ... 61 62 63 64 65 66 67 68 69 70
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

И вообще надо рассмотреть, может ли вечное складываться из элементов. Если может, оно будет иметь материю, ибо все, что состоит из элементов, сложно. Стало быть, если все состоящее из элементов необходимо должно возникнуть из них (вечно ли оно или оно возникшее), а все возникающее возникает из сущего в возможности (ведь из невозможного оно не возникло бы и не могло бы из него состоять), сущее же в возможности может и стать и не стать действительным, то, сколь бы ни было вечно число или что угодно другое, имеющее материю, оно может и не быть, так же как может и не быть то, что существует один день, и то, что существует сколько угодно лет; а если это так, то может не быть и то, время существования чего не имеет предела. Значит, оно не будет вечным, раз не вечно то, что может не быть, как нам довелось это показать в других рассуждениях. Если сущему и единому, ни их отрицание, а есть такого же рода сущее, как суть вещи и качество ее.

При этом надо было бы исследовать и то, каким образом соотнесенное множественно, а не только едино; они же исследуют, как возможны многие единицы помимо первого единого, но, как возможно много неравного помимо неравного [как такового], они не исследуют. И однако, они в своих рассуждениях пользуются [множественностью неравного] и говорят о большом и малом, многом и не многом, откуда числа, о длинном и коротком, откуда линия, о широком и узком, откуда плоскость, о высоком и низком, откуда имеющее объем, а также указывают еще больше видов соотнесенного. Так в чем причина того, что этих видов много?

Итак, необходимо, как мы говорим, предположить для каждой отдельной вещи сущее в возможности. А излагавший это учение кроме этого показал, что такое в возможности определенное нечто и сущность, но не как само по себе сущее, а именно что это отношение (как если бы он назвал качество), которое не есть ни единое или сущее в возможности, ни отрицание единого или сущего, а есть нечто одно из существующего; и если он искал, как возможна множественность вещей, то гораздо больше необходимо было, как уже сказано, исследовать не только то, что относится к той же категории, — как возможно много сущностей или много качеств, но и каким образом множественно существующее вообще: ведь одно сущее — это сущности, другое — свойства, третье — соотнесенное. Относительно прочих категорий есть еще и другое затруднение: как они образуют множество (поскольку качества и количества не существуют отдельно, они суть множество оттого, что субстрат становится множеством и есть множество, во всяком случае необходима какая-то материя для каждого рода, только невозможно, чтобы она существовала отдельно от сущностей); впрочем, относительно определенного нечто есть смысл спросить, как оно образует множество, если только не усматривать в чем-то [одновременно] и определенное нечто и такого рода сущность; а затруднение состоит скорее в том, каким образом множественны сущности, существующие в действительности, а не каким образом существует одна.

С другой стороны, если определенное нечто и количество не одно и то же, то [такими рассуждениями] не указывают, каким образом и почему множественно существующее, а указывают лишь, каким образом множественно количество. В самом деле, каждое число обозначает нечто количественное, а единица — если только она не мера — означает нечто количественно неделимое. Если, таким образом, количество и суть вещи — разное, то [этими же рассуждениями] не указывают, из чего эта суть и как она множественна; а если количество и суть вещи одно и то же, то утверждающий это наталкивается на много противоречий.

Можно было бы остановиться и на том, откуда берется уверенность, что числа действительно существуют [отдельно]. Тот, кто признает идеи, имеет основание считать числа некоторой причиной для существующего, раз всякое число есть некая идея, а идея каким-то образом есть для всего остального причина его бытия (допустим, что они исходят из этой предпосылки). Что же касается того, кто так не думает (поскольку он видит внутренние трудности относительно идей, так что по этой причине он не признает числа [идеями]), а признает число математическое, то почему должно ему поверить, что такое число существует и чем оно полезно для других вещей? Тот, кто говорит, что такое число существует, не объявляет его числом чего-либо (для него оно нечто самосущее), да и не видно, чтобы оно было причиной чего-то. А ведь все положения в учении о числах, как было сказано, должны быть приложимы к чувственно воспринимаемым вещам.

ГЛАВА ТРЕТЬЯ

Итак, те, кто считает, что идеи существуют и что они числа, пытаются, правда, вынося каждое за пределы множества и принимая его за нечто единое, так или иначе показать, почему оно существует; но так как их доводы лишены убедительности и несостоятельны, то и числу нельзя — по крайней мере на этом основании — приписывать [обособленное] существование. Пифагорейцы же, видя в чувственно воспринимаемых телах много свойств, имеющихся у чисел, объявили вещи числами, но не существующими отдельно, а такими, из которых состоят вещи. А почему же? Потому что свойства чисел имеются в гармонии звуков, в строении неба и во многом другом. Однако те, кто принимает одно только математическое число, не могут, исходя из своих предпосылок, утверждать что-либо подобное, потому и было сказано что науки не будут иметь своим предметом такие вещи. Мы же утверждаем, что науки о них имеются, как мы это сказали раньше. Ясно также, что математические предметы не существуют отдельно; если бы они существовали отдельно, то их свойства не были бы присущи телам. Пифагорейцы, стало быть, в этом отношении не заслуживают упрека; однако так как они из чисел делают природные тела, из неимеющего тяжести и легкости — имеющее тяжесть и легкость, то кажется, что они говорят о другом небе и о других телах, а не о чувственно воспринимаемых. А те, кто признает отдельное существование числа предполагают, что числа существуют, и притом отдельно (и точно так же геометрические величины), на том основании, что аксиомы, мол, не приложимы к чувственно воспринимаемым вещам, хотя эти математические положения истинны и "ласкают душу". Таким образом, ясно, что учение, противоположное этому, должно утверждать нечто обратное, и тем, кто так говорит, следует устранить только что указанное затруднение — почему, в то время как числа вовсе не находятся в чувственно воспринимаемых вещах, их свойства присущи чувственно воспринимаемым вещам.

Некоторые же, на том основании, что точка есть предел и край линии, линия — плоскости, плоскость — тела, полагают, что необходимо должны существовать такого рода сущности. Следует поэтому посмотреть, не слишком ли слаб этот довод. В самом деле, края не сущности, а скорее пределы (так как для хождения и вообще для движения имеется какой-то предел, то получается, что и они должны быть определенным нечто и некоторой сущностью. Но это нелепо). Не говоря уже о том, что даже если бы они были сущностями, все они были бы сущностями данных чувственно воспринимаемых вещей (ибо приводимый довод относился к этим вещам); так на каком основании будут они существовать отдельно?

Кроме того, относительно всякого числа и математических предметов человек не слишком уступчивый подделал бы выяснить то обстоятельство, что здесь нет никакой связи между предшествующим и последующим если у числа нет [отдельного] существования, то для тех, кто признает истинно сущими одни лишь математические предметы, величины все же будут существовать, и если бы не было этих последних, то все же будут существовать душа и чувственно воспринимаемые тела; но природа, как это видно из ее явлений, не так бессвязна, как плохая трагедия. Что же касается тех, кто признает идеи то они, правда, избавлены от этого упрека, ибо они считают [пространственные] величины состоящими из материи и числа (из двоицы — линии, из троицы, пожалуй, плоскости, из четверицы или из других чисел — разницы здесь никакой — твердые тела); но будут ли эти величины идеи, каким образом они существуют и что они дают вещам? Ведь как и математические предметы, они ничего им не дают. Да и нет о таких величинах ни одного математического положения, если только не хотеть приводить математические предметы в движение или создавать о них какие-то особые учения. Но правда, не трудно, принимая какие угодно предположения, без умолку распространяться о них. Итак, эти [философы] ошибаются указанным образом, стремясь объединить с идеями математические предметы. А те, кто впервые придумал два рода чисел — число-эйдос и число математическое, — не разъяснили и не могли бы разъяснить, каким образом и откуда именно возникает математическое число. Дело в том, что они ставят его в промежутке между эйдетическим и чувственно воспринимаемым числом. Ведь если оно получается из большого и малого, то оно будет тождественно числу-идее (а он пространственные величины выводит из некоторого другого малого и большого); указать же некоторое другое [большое и малое] — значит указать, что элементов имеется больше; и если начало каждого из этих двух родов чисел есть некоторое единое, то единое будет чем-то общим этим [двум единым], и тогда надо выяснить, каким образом оно становится и этим множеством; в то же время по этому учению число не может возникнуть иначе как из единого и из неопределенной двоицы.

1 ... 61 62 63 64 65 66 67 68 69 70
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?