Большая Советская Энциклопедия (ЛИ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Л. т. до конца 18 в. господствовала также и в ВМФ. Корабли для ведения морского боя строились в линию, исход боя решался фронтальным столкновением и одновременным ведением огня из орудий большинства кораблей. В конце 18 в. в ВМФ перешли к новой — манёвренной тактике, основы которой были заложены русскими адмиралами Г. А. Спиридовым и Ф. Ф. Ушаковым. (См. Военно-морское искусство.) В современных условиях термин «Л. т.» обычно употребляется, когда имеются в виду неповоротливые боевые порядки, отсутствие их глубины, равномерное распределение сил по фронту, неспособность к маневру с изменением обстановки и др.
И. И. Картавцев.
Линейная форма
Лине'йная фо'рма, форма первой степени. Общий вид Л. ф. n переменных x1, x2, ..., xn:
f(x1, x2, ..., xn) = a1x1 +a2x2 + ... + anxn,
где a1, а2, ..., an — постоянные. Если x1, x2, ..., xn трактовать как координаты вектора х в n-мерном векторном пространстве, то f удовлетворяет условию
f(ax + bу) = af(x) + bf(y)
(где х, у — векторы, a, b — числа), которое может быть принято за определение.
Линейная функция
Лине'йная фу'нкция, функция вида у = kx + b. Основное свойство Л. ф.: приращение функции пропорционально приращению аргумента. Графически Л. ф. изображается прямой линией. При равных масштабах на осях коэффициент k; (угловой коэффициент) равен тангенсу угла, образованного прямой с осью Ox ( k = tg j, см. рис.), а b — отрезку, отсекаемому прямой на оси Оу. При b = 0 Л. ф. называется однородной; её график изображает пропорциональную зависимость: у = kx. Л. ф. широко применяется в физике и технике для представления (нередко — приближённо) зависимостей между различными величинами. Рассматривают также Л. ф. многих переменных; однородные Л. ф. многих переменных называют линейными формами. Если и аргумент и функция суть векторы, то однородными Л. ф. являются линейные преобразования.
Рис. к ст. Линейная функция.
Линейная эрозия
Лине'йная эро'зия, размыв горных пород и почв водой, текущей по устойчивым руслам; Л. э. приводит к образованию рытвин, оврагов, балок, долин. См. Эрозия.
Линейного интерполирования метод
Лине'йного интерполи'рования ме'тод, один из методов приближённого вычисления корней уравнения (трансцендентного или алгебраического) f(x) = 0. Сущность Л. и. м. заключается в следующем. Исходя из двух близких к корню а значений x0 и x1, в которых функция f(x) принимает значения разных знаков, берут в качестве следующего приближённого значения x2 корня a точку пересечения с осью абсцисс прямой, проходящей через точки (x0, f(x0)) и (x1, f(x1)) (см. рис.). Повторяя эту процедуру на более узком интервале [х0, x2], находят следующее приближение x3 и т. д. Общая формула Л. и. м. имеет вид
, (n = 2, 3, ...).
Др. названия Л. и. м.: метод хорд, метод секущих и (устаревшее) правило ложного положения (Regula faisi).
Лит.: Березин И. С.. Жидков Н. П., Методы вычислений, 2 изд., т. 2, М., 1962.
Рис. к ст. Линейного интерполирования метод.
Линейное письмо
Лине'йное письмо' А и Б, древнейшие письменности о. Крита. В текстах, выполненных Л. п. Б (крито-микенским слоговым письмом), засвидетельствован один из диалектов древнегреческого языка. Надписи, датируемые 15—14 вв. до н. э. и найденные в конце 19 в. на о. Крите, были впервые опубликованы английским учёным А. Эвансом в 1909. В 1939 в южной части Пелопоннеса были найдены таблички с такими же надписями, относящимися примерно к 13 в. до н. э. Дешифровка Л. п. Б принадлежит английским учёным М. Вентрису и Дж. Чедвику (1953). Знаки крито-микенского письма, соответствующие отдельным гласным или группам, состоящим из согласного с последующим гласным, по мнению некоторых учёных, были, очевидно, заимствованы и приспособлены к нуждам греческого языка. Некоторые знаки совпадают со знаками кипрского слогового письма (6—2 вв. до н. э.) и Л. п. А, которое датируется примерно 18—15 вв. до н. э. Не поддающееся дешифровке Л. п. А, по всей вероятности, не является индоевропейским (см. Критское письмо).
Лит.: Георгиев В., Словарь крито-микенских надписей, София, 1955; Лурье С. Я., Язык и культура микенской Греции, М., 1957; Furumark A., Linear A und die altkretische Sprache, B., 1956; Meriggi P., Primi elementi di minoico A, Salamanca. 1956; Sundwall J., Minoische Beiträge, «Minos», 1955, № 3, 1956, № 4; Chadwick J., Ventris M Studies in Mycenaean inscriptions and dialect, L., 1956; их же, Documents in Mycenaean Greek, Camb., 1956; «Minoica», B., 1958; Peruzzi E., Le iscrizioni minoiche, Firenze, 1960.
М. Л. Воскресенский.
Линейное преобразование
Лине'йное преобразова'ние переменных x1, x2, ..., xn — замена этих переменных на новые x'1, x’2, ..., x'n, через которые первоначальные переменные выражаются линейно, т. е. по формулам:
x1 = a11x’1 + a12x’2 + ... + annx’n + b1,
x2 = a21x’1 + a22x’2 + ... + a2nx’n + b2,
...
xn = an1x’1 + an2x’2 + ... + annx’n + bn,
здесь aij и bi (i, j = 1,2, ..., n) — произвольные числовые коэффициенты. Если b1, b2,..., bn все равны нулю, то Л. п. переменных называют однородным.
Простейшим примером Л. п. переменных могут служить формулы преобразования прямоугольных координат на плоскости
х = x' cos a - y' sin a + a,
у = x' sin a + y' cos a + b.
Если определитель D = ½aij ½, составленный из коэффициентов при переменных, не равен нулю, то можно и новые переменные x'1, x'2, ..., x'n линейно выразить через старые. Например, для формул преобразования прямоугольных координат
и
x’ =x cos a + ysin a + a1
y’ = -x sin a + cos a + b1
где a1 = - a cos a - b sin a, b2 = a sin a - b cos (. Другими примерами Л. п. переменных могут служить преобразования аффинных и однородных проективных координат, замена переменных при преобразовании квадратичных форм и т. п.
Л. п. векторов (или Л. п. векторного пространства) называют закон, по которому вектору х из n-мерного пространства ставят в соответствие новый вектор x', координаты которого линейно и однородно выражаются через координаты вектора х:
x’1 = a11x1 + a12x2 + ... +a1nxn
x’2 = a21x1 + a22x2 + ... +a2nxn
...
x’n = an1x1 + an2x2 + ... +annxn,
или коротко
x' = Ax.
Например, операция проектирования на одну из координатных плоскостей (пусть на плоскость хОу) будет Л. п. трёхмерного векторного пространства: каждому вектору а с координатами х, у, z сопоставляется новый вектор b, координаты x', y'., z' которого выражаются через х, у, z следующим образом : x' = х, y' = у, z' = 0. Пример Л. п. плоскости — поворот её на угол a вокруг начала координат. Матрицу
,
составленную из коэффициентов Л. п. А, называют его матрицей. Матрицами приведённых выше Л. п. проектирования и поворота будут соответственно
и .
Л. п. векторного пространства можно определить (как обычно поступают) без использования системы координат: соответствие х®у = Ax называют Л. п., если выполняются условия А(х + у) = Ax + Ау и A(ax) = aА(х) для любых векторов х и у и любого числа a. В разных системах координат одному и тому же Л. п. будут соответствовать разные матрицы и, следовательно, разные формулы для преобразования координат.