Под знаком кванта. - Леонид Иванович Пономарёв
Шрифт:
Интервал:
Закладка:
Тем не менее дело было сделано, а слово — сказано.
Гипотеза радиоактивного распада, как и всякая плодотворная гипотеза, имела следствия и допускала их опытную проверку. Первую из них осуществил Содди совместно с Уильямом Рамзаем уже летом 1903 г., вскоре после возвращения из Монреаля в Лондон. Идея их опыта была предельно проста: они собирали эманацию радия, которая выделялась из имеющихся у них 50 мг бромида радия, в тонкую стеклянную трубку и, пропуская через нее электрический разряд, наблюдали характерный, ни на что другое не похожий спектр нового элемента. С течением времени, однако, этот спектр слабел, а на его месте все более отчетливо проступал спектр гелия: эманация радия распадалась на гелий и радий А. Участники и очевидцы этого эксперимента даже много лет спустя не могли скрыть волнения, рассказывая о нем,— настолько он поразил их воображение: видеть воочию, как один элемент превращается в другой,— это для физика и химика равносильно тому, как если бы зоолог наяву увидел превращение кошки в собаку. Немного позднее «эманация радия» получит от Резерфорда свое настоящее имя — радон (символ Rn), а Рамзай проявит чудеса экспериментального искусства и, имея всего 0,1 мм3 радона, измерит его атомную массу: она окажется равной 222. Атомная масса радия (226) была измерена Марией Кюри в 1902 г., а атомная масса гелия (4) была определена в работах Рамзая за три года до этого. Теперь гипотезу радиоактивного распада радия по схеме
Ra→Rn + Не
можно было проверить не только качественно, по наблюдению спектров, но и количественно. Действительно, атомная масса радия 226 = 222 +4 оказалась в точности равной сумме атомных масс радона и гелия. После такого доказательства гипотезу радиоактивного распада можно смело переводить в ранг научной истины.
Довольно скоро установили, что все радиоактивные элементы распадаются с определенной скоростью, которая является такой же неотъемлемой характеристикой радиоэлемента, как и его атомная масса. По предложению Резерфорда, с 1900 г. эту скорость принято характеризовать периодом полураспада элемента T1/2, то есть временем, за которое распадается половина исходного количества радиоактивного элемента. Например, период полураспада радона — 3,82 дня, радия — 1600 лет, урана — 4,5 млрд. лет.
Наконец с точки зрения гипотезы радиоактивного распада становилось понятным, почему радий всегда встречается вместе с ураном: по-видимому, он является продуктом его распада. Далее, если радий получается как продукт распада урана, радий порождает радон, последний распадается еще дальше, то должны существовать целые радиоактивные семейства, у которых есть первый элемент (радиоактивный) и последний (стабильный). Все последующее десятилетие было посвящено поискам этих радиоактивных семейств, распутыванию последовательности распадов в них, измерению скоростей распада и т. д. К 1913 г. эта работа была в основном закончена.
Итоговая статья Резерфорда и Содди имела название «Причина и природа радиоактивности». После нее можно было сказать, что теперь природа радиоактивности надежно установлена. Однако причина, по которой атомы радиоактивных веществ самопроизвольно взрываются, эта причина станет понятной только четверть века спустя, после создания квантовой механики. И только через десять лет станет ясной природа Х-лучей, с открытия которых начались исследования радиоактивности.
ЭНЕРГИЯ РАДИЯ
Вскоре после начала своих исследований Пьер и Мария Кюри заметили, что склянки с концентратами радия светятся в темноте мягким голубоватым светом (этому свечению радий обязан своим названием). «Вот свет будущего!» — говорил Пьер Кюри своим друзьям, не подозревая, насколько он прав. Уже тогда понимали, что наблюдаемое свечение объясняется флуоресценцией, которую вызывает излучение радия в веществе стекла. Но в отличие от обычной флуоресценции, которая быстро затухает после облучения вещества, свечение препаратов радия без видимого ослабления длилось годами. Кроме того, соединения радия были всегда немного теплее, чем окружающие предметы. Все это означало, что радий непрерывно излучает энергию.
В начале 1903 г. Пьер Кюри и Альбер Лаборд измерили количество выделяемой теплоты: оказалось, что 1 г радия за 1 ч выделяет примерно 100 кал (по позднейшим измерениям— 135 кал), то есть теплоту, достаточную для того, чтобы вскипятить 1 г воды или расплавить 1 г льда. Резерфорд, измеряя ионизацию газов под действием радиоактивности, пришел к тому же заключению: радий непрерывно излучает энергию. Эта энергия очень велика: легко подсчитать, что за год 1 г радия выделяет свыше 1 млн. кал, то есть энергию, которая освобождается при сгорании 170 г угля, а при полном распаде 1 г радия выделится огромная энергия около 4 млрд. кал, то есть теплота сгорания 0,5 т угля.
Откуда радий черпает такую большую энергию? На этот вопрос ученые тщетно пытались ответить в течение четверти века. Мнения исследователей разделились: Уильям Крукс, Пьер и Мария Кюри и ряд других ученых склонялись к мысли, что атомы радия работают как трансформаторы энергии, то есть они вначале поглощают энергию волн неизвестной природы, которые пронизывают все сущее наподобие эфира, а затем переизлучают эту накопленную энергию. Другие уподобляли выбрасывание α-частиц процессу испарения молекул. Но в этом случае они должны были бы иметь различные энергии, а Уильям Брэгг в 1904 г. определенно доказал, что это не так: все α-частицы, испускаемые радием, имели одну и ту же, строго определенную энергию. Резерфорд решительно настаивал на внутриатомном происхождении энергии радия и, как показало будущее, был совершенно прав.
Споры о происхождении внутриатомной энергии носили острый, эмоциональный характер и переходили иногда принятые границы корректности в научных дискуссиях. По-видимому, это характерная особенность таких дискуссий — начиная с проблемы «вечного двигателя». Быть может, присущий им эмоциональный накал объясняется важностью проблемы: на добывание энергии человечество всегда тратило около трети своих усилий.
ВОКРУГ КВАНТА
Рентгеновские волны
Дифракция и интерференция рентгеновских лучей были открыты в 1912 г. в Мюнхене — и это не случайно. В то время там директором Института физики был Рентген, кафедрой теоретической физики заведовал Зоммерфельд, а Лауэ работал у него