Категории
Самые читаемые

Мозг фирмы - Стаффорд Бир

Читать онлайн Мозг фирмы - Стаффорд Бир
1 ... 61 62 63 64 65 66 67 68 69 ... 115
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

В кибернетике используются логарифмы, вычисляемые по основанию 2. Это обусловлено тем, что исходным положением для решения является выбор между "да" и "нет". Такое бинарное различие (вспомните первую часть) называется битом. Более того, четыре, вещи мы можем различать с помощью двух битов информации. Мать и отец, их сын и дочь могут быть по-разному определены: "решением", во-первых, кто из них мужчина и кто женщина, и, во-вторых, кто первого и второго поколения. Нам необходимы три бинарных решения, чтобы различить восемь состояний, четыре бита нужны для различения 16 состояний, пять битов — для различения 32 состояний и т. д. Это все, что имеется в виду под фразой "вычисление логарифма по основанию 2". При десяти бинарных решениях можно различить 1024 состояния. И если все это еще не звучит достаточно впечатляюще, то следует добавить, что эти величины растут экспоненциально. Сорок бит позволят распознать одну особь в популяции, превышающей примерно триллион (1012.)

Все, что мы теперь делали, сводится к созданию полезного арифметического метода, позволяющего рассчитывать неопределенность. Восемь вариантов, восемь изделий, изготавливаемых на восьми станках, создают 512 вариантов. Такова мера нерешенных проблем, пока не достигнуто заключение относительно того, какой вариант, какого изделия, на каком станке будет выпускаться. Теперь давайте используем наш логарифмический метод. Разнообразие из восьми вариантов по каждому измерению может быть заменено числом бит (а именно логарифмом по основанию 2), требуемых для его выражения. Для такого разнообразия ответом будет три бита (здесь 3 бита: 8/2=4; 4/2=2; 2/2=1). Общее разнообразие, вместо 8х8х8=512 вариантов теперь составит 3+ 3+ 3=9 бит. Нет нужды говорить, что оба этих разнообразия эквивалентны, поскольку 9 бит равны 29 = 512.

Смысл предложенного здесь метода в том, что мы можем создать модель предстоящего решения, основанную не на последовательности приоритетов, и что будем измерять общее разнообразие решений. Тогда любое заключение, полученное мультинодом, будет сокращать разнообразие как общую неопределенность. Более того, исключенное разнообразие будет не просто разнообразием, относящимся к вариантам, непосредственно снятым с рассмотрения, но также к исключенным из разнообразия, относящегося к другим измерениям данной проблемы, теперь признанным и не имеющим к ней отношения как следствия ранее принятого нами решения. Вспомним, что мы разыскивали город, который не только находится на определенной широте, но он и не может находиться в море, а это ограничивает поиск его широты.

  Когда мультинод начинает принимать решения, что делается отсечением разнообразия в определенном логическом измерении, он неявно ускоряет уменьшение разнообразия. Возвратимся к примеру вариантов восьми изделий, выпускаемых на восьми станках, и предположим, что мы сняли четыре станка. Разнообразие тогда составит 8х8х4 = 256. Иначе, начав привыкать к нашей новой идее, предпочтительнее записать, что первоначальное разнообразие 3+ 3+ 3=9 битов теперь уменьшилось до 3+ 3+ 2=8 битов (= 256). Здесь мы подошли к важному моменту. Мы считаем, что уменьшили разнообразие на один бит. В действительности из-за многомерности нашей проблемы такая оценка будет заниженной. Исключив четыре из восьми станков, мы (фактически) сделали невозможным производство более чем двух изделий. Для изготовления шести остальных требуется четыре снятых станка. Отсюда возможное производство изделий теперь представляет разнообразие всего в один бит — как следствие нашего первого решения. Но, в свою очередь, два таких изделия могут выпускаться только восьми цветов на тех самых четырех станках, которые мы теперь исключили. Оставшиеся станки как таковые могут теперь выпускать изделия только одного цвета. Итак, хотя мы остались без четырех станков, мы можем выпускать только два вида изделий, а вопрос об их цвете вообще снимается. Тогда нам остается решить, что делать с оставшимися тремя битами информации — 23 = 8 сохранившихся вариантов.

На этом примере мы, таким образом, пытаемся изучить действенность нашей второй парадигмы при n -мерной проблеме (хотя в данном случае n < 3). Механизмы, с помощью которых реализуется его "сила парадигмы", сводятся к объединению логических переменных и размещению этих переменных в разных измерениях. Тогда, хотя мультинод может не рассматривать последовательно свои решения в приемлемом порядке их приоритетов, любое принятое им решение будет, вероятно, отражаться во всей системе и, следовательно, усекать разнообразие с огромной скоростью. Здесь уместно сделать два замечания.

Первое состоит в том, что кажущаяся ошеломляющей, неопределенность при принятии любого решения в реальной жизни с самого начала быстро уменьшается до тех пор, пока не останется очень мало вариантов выбора решений. Действительно, можно доказать математически, что разнообразие по мере принятия промежуточных решений уменьшается экспоненциально.

Второе замечание более интересно с точки зрения психологии управляющих. Отнюдь не ясно (судя по нашим наблюдениям), что управляющие, принадлежащие мультиноду, понимают силу влияния, которое оказывает кажущееся маловажным их промежуточное решение. Следовательно, они недооценивают важность достижения логической последовательности нахождения решений. Вероятно, главный выигрыш, достигаемый описанной здесь процедурой при подготовке реальных решений, состоит в том, что при неограниченной свободе действия мультинод может показать (даже в количественном выражении) влияние того, что с первого взгляда кажется второстепенным, на общую структуру окончательного решения.

Парадигма поиска и мера энтропии — вот все необходимое, что позволяет мультиноду помочь научному решению рассматриваемых проблем. Но, как свидетельствует опыт, люди нелегко понимают подробности работы такого метода на практике. По этой причине мы завершим этот раздел примером. Было бы полезным привести реальный пример использования этого метода на практике (поскольку он показал свое "могущество"), но, к несчастью, это невозможно — реальные примеры слишком сложны.

Во-первых, они требуют больше исходной информации для понимания происходящего, чем можно привести в книге, и больше алгебраических расчетов, чем допустимо для иллюстрации.

Во-вторых, реальные примеры — фирменный секрет. Нет смысла использовать наш метод, если проблема на самом деле недостаточно серьезна, но по реальному примеру можно установить фирму — его источник.

Более того, сила этого метода именно в том, что он потенциально может показать слабости любого управляющего, которые могут при этом выясниться.

Так происходит потому, что принятие мультинодом неверного решения или принятие решения в логически неверной последовательности очень ярко проявляется. Постепенно уменьшающееся, как было сказано, по экспоненте разнообразие внезапно (в каждом взятом из реальной жизни примере) возрастает по ходу рассмотрения проблемы мультинодом. Этого не должно быть. Конечно, так случается в результате .аннулирования ранее принятых неверно решений или вследствие переформулирования проблемы. В обоих случаях факт использования этого метода оказал огромную помощь заинтересованному руководству, но пересказ всех обстоятельств в реальном примере поставил бы их в глупое положение перед публикой. Эта глава, следовательно, будет закончена придуманным примером использования мультинода.

Пример

Рассмотрим введение в производство нового товара. Факторы, которые нам придется учитывать, неисчерпывающие, но они типичны для факторов, которые должно учитывать руководство. При определении этих факторов мы окажемся перед необходимостью обозначить шесть измерений логического пространства подготовки решения. Далее, число вариантов по каждой логической переменной выбирается произвольно, но, подчеркиваю, они весьма правдоподобны. Задача состоит в том (как было сказано), чтобы принять решение о новом товаре, но мультинод тотчас же признает, 'по дело здесь значительно сложнее, "поскольку хотят сотворить чудо". Решение о производстве нового товара означает точное определение всех особенностей его характеристик, включая замысел его разработки, производства и сбыта. Поэтому паше решение превращается в нечто такое, что требует тщательной проработки. Но мы будем придерживаться мнения, что это решение на самом деле станет достаточно простым, если упростить его и снизить исходную неопределенность до такой степени, чтобы сказать:

  делать так. Теперь рассмотрим весь процесс, предлагая правдоподобные переменные, и оценим правдоподобные изменения каждой из них.

1 ... 61 62 63 64 65 66 67 68 69 ... 115
Перейти на страницу:
Отывы о книге
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?