Диалоги (август 2003 г.) - Александр Гордон
Шрифт:
Интервал:
Закладка:
Дальше, в это время, именно в тридцатые годы, была короткая заметка, но только через три года Лемэтр опубликовал свою главную работу о первоатоме, где он изложил идею о том, что рождение Вселенной было квантовым. Дело всё в том, что Лемэтр очень интересовался уже тогда квантовой физикой, и у него была такая идея, что первоначально было нечто, что он назвал первоатомом. Этот первоатом взорвался или распался на множество мелких частиц, и за счёт этого уже квантового процесса во Вселенной появилась не нулевая энтропия, которую он связывал, правда, с космическими лучами, тогда ещё не было открыто реликтовое излучение. И вот, так сказать, появилась стрела времени. То есть, направление от прошлого к будущему. Эта идея Лемэтра была высказана им и опубликована, собственно говоря, только в 33-ем году. Далее события развивались так.
Первоначально отношение к теории расширяющейся Вселенной, а значит и к проблеме начала времени, было, вообще говоря, не положительным ещё и потому, что Хаббл неправильно определил постоянную Хаббла тогда. Наблюдения были не очень точны, и расстояния до далёких галактик определялись неправильно. Он её определил, как 500 километров в секунду на мегапарсек, и тогда оказалось, что возраст Вселенной меньше возраста Земли. Любой нормальный человек спрашивал: о какой же теории Вы говорите. И эта ситуация продолжалась практически до 60-х годов, когда научились гораздо точнее мерить расстояние. Выяснилось, что постоянная Хаббла совсем не 500 километров в секунду на мегапарсек, а меньшая величина. Порядка 65, как сейчас считают.
Но окончательным решением проблемы можно считать 1965 год, когда Пенроузом и Хокингом в Англии была доказана теорема, что если Вселенная расширяется и если в этой Вселенной материи удовлетворяют обычным условиям, так называемым уравнениям состояния, то у Вселенной обязательно в прошлом было начало. Эта теорема называется теоремой о сингулярности. И вот этот момент, можно сказать, – это момент, когда было установлено, что действительно Вселенная – совсем не то, что о ней думали. Что идея вечной во времени Вселенной, которую мы сейчас видим, эта идея, по всей видимости, должна быть оставлена. Надо заметить, что у нас в стране ещё в 80-х годах все студенты в университетах, институтах изучали диалектический материализм, в котором чёрным по белому было написано, что Вселенная вечна и бесконечна. И никаких разговоров о том, что когда-то было начало, не велось. Но это история вопроса, может быть, Михаил Леонидович сейчас добавит исторических фактов.
Михаил Фильченков: Я хотел начать с того, что ещё до Фридмана, в 17-м году, после того как Эйнштейн создал общую теорию относительности, он предложил модель стационарной Вселенной. И, собственно, поэтому он и возражал Фридману. Но буквально в это же время де Ситтер – это голландский астроном – предложил тоже нестационарную модель, но без сингулярности. Под сингулярностью подразумевается некое такое состояние с бесконечной плотностью, где и кривизна обращается в бесконечность. Это решение описывало как бы пустой мир, но с постоянной кривизной. И вот этот пустой мир, с постоянной кривизной, получил название Вселенной с космологической постоянной. Как космологическая постоянная она выражается через эту постоянную кривизну. Расширение – то, о котором говорил Андрей Анатольевич, но не упомянул – какой закон расширения, получил Хаббл, в смысле, Хаббл зарегистрировал только факт расширения. А вот что получил конкретно Фридман: все масштабы растут с течением времени по степенному закону. То есть, Хаббл наблюдал зависимость скорости удаления галактик от расстояния. Она оказалась линейной. А вот сами масштабы в зависимости от времени растут по степенному закону. Если у вас, допустим, есть какое-то излучение, скажем, электромагнитное, то закон – корень квадратный из времени. А если другая какая-то материя, то другой закон. Но закон степенной. То есть, расширение достаточно медленное. А в модели де Ситтера, т.е. с космологическим членом, расширение по экспоненте, т.е. гораздо более быстрое. Поскольку это была модель пустой Вселенной, то есть галактики там были как некие пробные частицы, которые просто движутся, но не определяют динамику этого расширения (динамику определял так называемый космологический член в уравнениях Эйнштейна), то после того как было получено решение Фридмана, которое описывало динамику, определяемую материей, наполняющей Вселенную (галактики, излучения и так далее), то, конечно, от модели де Ситтера быстро отказались, потому что она ничего реального не описывала. Это продолжалось некоторое время.
А вот приблизительно начиная с 60-х годов, стали обращать внимание на эту модель. И она попала в учебники, скажем, есть знаменитые книги по гравитации, допустим, Томан. Там уже это решение упомянуто. Но, в общем, вторую жизнь этому решению дал ленинградский учёный Эраст Борисович Глинер. Он в 65-м году предложил такую модель, в которой Вселенная расширяется сначала быстро, то есть по экспоненте. То есть, как бы пустая Вселенная, потом переходит на стадию расширения вещества. Вот то, что описывал в своей модели Фридман. Но, правда, причина этого перехода была не ясна. И поэтому работы Глинера сначала, в общем, не очень были встречены положительно научной общественностью. Он ещё в 70-м году опубликовал работу. Где-то в конце 70-х годов – в начале 80-х, были ещё работы Старобинского, Мостепаненко, потом дальше Гута. Через некоторое время выяснилось, что это, по-видимому, какое-то скалярное поле, которое и описывается этим космологическим членом. В результате определённых процессов, которые происходят во Вселенной, когда скалярное поле сильно осциллирует, начинает рождаться материя – эти самые частицы, излучение, которые потом определяют динамику Вселенной в модели Фридмана. И заслуга Глинера заключалась в том, что он предложил этот сценарий. Потому что, собственно, он использовал решение де Ситтера. Ну и, кроме того, он считал, что и конечная стадия гравитационного коллапса приводит к этому решению де Ситтера, то есть внутри чёрной дыры не сингулярность, а этот вакуум, описываемый космологическим членом. Кроме того, когда было предложено решение де Ситтера, то сразу из него следовало, что теоремы о неизбежности сингулярности не работают в силу того, что так называемое сильное энергетическое условие (то есть, что давление должно быть больше, чем некая величина отрицательная), для космологического члена не выполняется. И поэтому теоремы Хокинга-Пенроуза о неизбежности сингулярности в таком сценарии не работают.
А.Г. Хорошо, я теперь скажу о том, какой же картина в космологии сегодня представляется нам после этих открытий. Дело в том, что иногда открытие Фридмана сравнивают с открытием Коперника. Я бы сказал, что оно неким образом является антикоперниковским. Во-первых, потому что Коперник, в действительности, просто возродил точку зрения Аристарха Самосского в Греции, который уже говорил о том, что Земля вращается вокруг Солнца. Кроме того, мы знаем, что кроме Коперника был Джордано Бруно, после которого возникла некоторая определённая модель Вселенной, которая весьма популярна была в 19-м веке и в начале 20-го. Что это за точка зрения? Эту точку зрения Лемэтр, один из создателей космологии, назвал кошмаром бесконечности.
Суть этого кошмара состоит в следующем. Если человек 19-го века смотрел на звёздное небо, то он смотрел на некую непонятную для него бесконечность. Это пространственная бесконечность. Если человек задавал себе вопрос – кто я, откуда я, то он не мог на это ответить, потому что если сзади бесконечное время, этот вопрос бессмысленный. Вы ничего не можете объяснить, если время существования Вселенной бесконечное, если сзади вас бесконечное прошлое. И вот именно это назвал Лемэтр кошмаром бесконечности. Человек, который начинает понимать, что он конечное существо, окружён, с одной стороны, бесконечностью пространственной и бесконечностью временной, чувствует полную беспомощность, что бы то ни было объяснить. Вселенная нам представляется чем-то похожим на бесконечный супермаркет, в котором разложено множество каких-то вещей. Одна из этих вещей – земной шар с человечеством на нём. А есть какие-то другие вещи, но всё это бесконечно и всё в этом смысле является нерациональным и, как Лемэтр говорил, просто кошмарным.
Какой же образ возникает, если мы на самом деле считаем, что у Вселенной было начало и, кроме этого, что наблюдаемая Вселенная занимает конечный объём, как это утверждает космология. Конечно, за наблюдаемой Вселенной может быть какой-то процесс, но всё равно мы его наблюдать не можем. Вот эта Вселенная выступает сегодня как удивительным образом организованное целое. Можно задать такой вопрос: о чём могли бы рассказать атомы нашего тела? Допустим, я смотрю на свой палец. И если бы эти атомы могли говорить, что бы они мне рассказали о моей рождении? Во-первых, надо начать с того, что каждый из нас имеет в действительности возраст ни двадцать, ни тридцать, ни шестьдесят даже лет, ни семьдесят лет, а 13,7 миллиардов лет. Потому что если мы спросим, а как родился я, если под этим «я» понимать эту структуру из элементарных частиц атомов и атомных ядер, то нам расскажут следующую историю.