Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Читать онлайн Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин
1 ... 51 52 53 54 55 56 57 58 59 ... 110
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Нерешённые вопросы и мультивселенные:

Могут ли мультивселенные давать предсказания, которые нельзя получить другими способами?

Вы, безусловно, заметили, что даже в самых оптимистичных планах предполагается, что предсказания на основе мультивселенного подхода будут иметь другой характер, отличный от того, что мы традиционно ожидаем от физики. Прецессия перигелия Меркурия, магнитный дипольный момент электрона, энергия, выделяемая при расщеплении ядра урана на барий и криптон, — всё это примеры предсказаний. Они основаны на тщательных математических вычислениях, опирающихся на цельную физическую теорию, и дают в конце точные, проверяемые числа. Эти числа были подтверждены экспериментально. Например, вычисления дают, что магнитный момент электрона равен 2,0023193043628; измерения показывают, что он равен 2,0023193043622. С точностью до малых ошибок, присущих и первым и вторым, эксперимент таким образом подтверждает теорию с точностью 1 к 10 миллиардам.

В той ситуации, где мы сейчас находимся, кажется, что предсказания теории мультивселенной никогда не достигнут такого стандарта точности. Возможно, что в наиболее продвинутых сценариях мы сможем характеризовать как «весьма вероятные» предсказания того, что космологическая постоянная, или величина электромагнитного взаимодействия, или масса u-кварка будут лежать в некотором диапазоне значений. Но чтобы это улучшить, нам должно очень сильно повезти. Кроме решения проблемы измерения необходимо построить убедительный вариант теории мультивселенной с очень скошенными распределениями (например, чтобы с вероятностью 99,9999 процента наблюдатель оказался во вселенной с наблюдаемым значением космологической постоянной) или с удивительно тонкими корреляциями (например, что существование электрона возможно только во вселенных с космологической постоянной равной 10−123). Если теория мультивселенной не обладает такими правильными свойствами, то точность, всегда отличавшая физику от других дисциплин, будет потеряна. Есть много физиков, которые не готовы заплатить такую цену.

Довольно долго я тоже придерживался такой позиции, но затем моя точка зрения начала меняться. Как любой другой физик, я предпочитаю конкретные, точные и недвусмысленные предсказания. Но я, как и многие другие, пришёл к пониманию, что не все фундаментальные свойства Вселенной подходят для точных математических предсказаний; по крайней мере вполне логично допустить, что могут существовать свойства, не укладывающиеся в рамки точных предсказаний. С середины 1980-х годов, когда я был студентом, изучающим теорию струн, было широко распространено мнение, что эта теория однажды объяснит значения масс частиц, константы взаимодействий, число пространственных измерений и вообще любое фундаментальное физическое свойство. Я по-прежнему надеюсь, что эта цель будет достигнута. Однако я признаю, что чрезмерно требовать от уравнений теории так извернуться, чтобы выдать число типа массы электрона (0,000000000000000000000091095 в единицах планковской массы) или массы t-кварка (0,0000000000000000632 в единицах планковской массы). Когда же наступает очередь космологической постоянной, задача вырастает до исполинских масштабов. Вычисления, которые после многих страниц выкладок и мегаватт, затраченных на компьютерное моделирование, выдадут то самое заветное число, с которого начиналась глава 6, — не то чтобы в принципе были невозможны, но здесь может дать сбой даже самый оптимистичный оптимизм. Увы, теория струн сегодня ни чуть не ближе к вычислению любого из этих чисел, чем когда я был студентом. Однако это не значит, что теория струн или другая, ещё не известная теория, однажды не достигнет этого. Возможно, что оптимистам следует быть более изобретательными. Но в рамках сегодняшней физики имеет смысл поискать новые подходы. Именно этим занимается теория с мультивселенными.

В рамках хорошо разработанного подхода с мультивселенными можно чётко выделить те физические свойства, которые следует рассматривать с точки зрения, отличной от стандартной: это те свойства, которые изменяются от одной вселенной к другой. В этом сила данного подхода. В теории с мультивселенными можно иметь точный контроль над тем, какие нерешённые загадки, характерные для некоторой частной вселенной, сохранятся в мультивселенном контексте, а какие нет.

Космологическая постоянная являет собой первый пример. Если её значение варьируется в рамках данной мультивселенной, причём во вполне определённом интервале, тогда то, что когда-то было загадкой, — её значение — теперь становится весьма прозаичным. Подобно тому как в обувном магазине с налаженными поставками товара всегда найдутся ботинки вашего размера, так и необъятная мультивселенная заведомо будет содержать вселенные с измеренным нами значением космологической постоянной. Задача, над которой доблестно бились поколения учёных, легко может быть разрешена с помощью идеи мультивселенной. Мультивселенная показала, что этот вопрос, кажущийся столь глубоким и столь непонятным, возникает из-за ошибочного допущения, что космологическая постоянная имеет единственное значение. Именно в этом смысле теория мультивселенной может обладать значительной предсказательной силой и иметь потенциальную возможность оказать неоценимое влияние на ход научных исследований.

С подобными рассуждениями нужно обходиться очень аккуратно. Что если Ньютон, увидев упавшее яблоко, решил бы, что мы являемся частью мультивселенной, в которой яблоки в одних вселенных падают вниз, в других вверх, поэтому падающее яблоко лишь указывает на то, в какой именно вселенной мы находимся, и не стоит предпринимать никакие дальнейшие исследования? Или он бы пришёл к выводу, что в каждой вселенной какие-то яблоки падают вниз, а какие-то вверх, и причина, согласно которой мы видим только падающие вниз яблоки, — это всего лишь вопрос нашего окружения, то есть все падающие вверх яблоки в нашей Вселенной уже упали вверх, поэтому давно оказались где-то в глубинах космоса? Это, конечно же, глупый пример — никогда не существовало причины, в том числе теоретической, так думать — но вопрос сам по себе серьёзный. Привлекая мультивселенную, наука может ослабить стимул решать конкретные задачи, даже если некоторые из этих задач ждут своего решения в рамках стандартного подхода, без мультивселенной. Вместо того чтобы упорно трудиться и расширять своё понимание, можно попасть под обаяние мультивселенной и преждевременно забросить привычные методы исследований.

Здесь кроется потенциальная угроза, которая объясняет, почему некоторые учёные содрогаются при упоминании мультивселенных рассуждений. Именно поэтому концепция мультивселенной, если её воспринимать всерьёз, должна быть строго обоснована с помощью теоретических результатов, она должна чётко характеризовать вселенные, из которых она состоит. Анализ должен быть аккуратными и методичным. Однако отворачиваться от мультивселенной только потому, что она могла бы завести в тупик, также рискованно. Если мы так поступим, мы закроем глаза на реальность.

Глава 8. Множественные миры квантовой механики

Квантовая мультивселенная

Квантовая реальность

Статус теорий с параллельными вселенными, которые были рассмотрены выше, находится под большим вопросом. Бесконечное пространство, вечная инфляция, миры на бранах, циклическая космология, струнный ландшафт — эти захватывающие идеи возникли из ряда научных открытий. Но каждая из них остаётся гипотетичной, как и породившие их мультивселенные. Хотя многие физики с готовностью высказывают своё мнение «за» или «против» разных схем мультивселенных, большинство признают, что только будущие открытия — теоретические, экспериментальные и наблюдательные — определят, какие из этих идей останутся в науке.

Идея мультивселенной, к рассмотрению которой мы сейчас перейдём, возникает из квантовой механики. У неё особый статус. Многие физики уже определились с окончательным вердиктом по поводу этой мультивселенной. Но особенность в том, что их вердикты не совпадают. Различия проистекают из глубокой и до сих пор нерешённой проблемы перехода от вероятностной интерпретации квантовой механики к определённости повседневной реальности.

В 1954 году, почти тридцать лет спустя после формулировки квантовой теории такими светилами науки, как Нильс Бор, Вернер Гейзенберг и Эрвин Шрёдингер, никому неизвестный студент Принстонского университета по имени Хью Эверетт III придумал поразительную интерпретацию. Анализируя проблему, над которой Бор, мэтр квантовой механики, безуспешно корпел и никак не мог решить, он показал, что для правильного понимания квантовой механики может потребоваться огромное количество параллельных вселенных. Теория Эверетта стала одной из первых математических конструкций, из которой следовало, что мы можем являться частью некоторой мультивселенной.

1 ... 51 52 53 54 55 56 57 58 59 ... 110
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈