Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией - Джереми Тейлор
Шрифт:
Интервал:
Закладка:
По мнению Мела Гривза и Карло Мейли (выдающегося исследователя рака из Калифорнийского университета в Сан-Франциско), тридцать лет исследований подтвердили идеи Ноэулла. «Большой массив данных, собранных при помощи анализа срезов тканей, биопсического материала и единичных клеток, доказывает правильность теории Ноуэлла, – говорят они, – поскольку показывает наличие сложных и разветвляющихся траекторий эволюционного развития, поразительно напоминающих знаменитое дарвиновское дерево эволюционного видообразования. Дивергентные раковые клоны в этом контексте проходят процесс, эквивалентный процессу аллопатрического видообразования в разделенных естественных средах обитания – как это произошло с галапагосскими зябликами».
Дарвин сравнивал эволюцию жизни на Земле не с линейным, а с бесконечно ветвящимся процессом, где каждый живущий сегодня вид представляет собой конечную ветвь на невероятно разветвленном дереве. Эволюция раковых клонов внутри одной опухоли – это дарвиновская эволюция в миниатюре. И точно так же, как все виды живых организмов (конечные ветви) произошли от общего предка (основания ствола эволюционного дерева), все раковые клоны происходят от общей «родительской» клетки, даже если они накопили достаточно дополнительных мутаций, чтобы кардинально отличаться друг от друга. Галапагосские острова представляют нам наглядную иллюстрацию того, как происходит образование новых видов от общего вида-основателя при географическом разделении их зон обитания, как это случилось со знаменитыми «дарвиновскими» зябликами. Микросреда внутри опухоли и ее непосредственное окружение обеспечивают аналогичную степень гетерогенности среды обитания вследствие очень разных уровней кровоснабжения, снабжения кислородом и питательными веществами, конкуренции между клонами и интенсивности иммунных атак.
Разные типы рака приходят к злокачественности разными путями. Особенно хорошо это видно в человеческом кишечнике, где существует по меньшей мере четыре основных типа колоректального рака. Джо Вейганд получил прозвище ультрамутатора, поскольку он страдает относительно редкой формой колоректального рака, при которой мутационная активность достигает запредельных уровней. Это заболевание передается по наследству в отличие от большинства видов рака, которые носят спорадический характер и развиваются в результате новых мутаций, возникающих у отдельно взятого человека. Джо знал о том, что он подвергается значительному риску. Его бабушка по отцовской линии умерла от рака толстой кишки, когда ей было сорок с небольшим лет, и в том же возрасте подозрения на рак толстой кишки диагностировали у его отца. Эндоскопическое исследование показало, что в его прямой кишке находятся сотни предраковых полипов. Врачи предложили понаблюдать за ними. Но в то время Джо и его сестра были совсем маленькими, и отец не хотел подвергать свою молодую семью риску остаться без кормильца, дожидаясь, когда в каком-нибудь из этих полипов начнутся тревожные изменения. Он боялся, что врачи могут не заметить начало злокачественного перерождения и у него разовьется полноценная опухоль. Поэтому он согласился на полное удаление толстой кишки и всю оставшуюся жизнь ходил с колостомическим мешком.
Неудивительно, что Джо регулярно проходил колоноскопию, однако многообещающая карьера в финансовом секторе заставила его на четыре года забыть про обследования. Тревожная потеря веса вынудила его вновь обратиться к терапевту. «Я потерял 30–40 процентов своего веса – я выглядел как привидение. И у меня совершенно не было сил». Терапевт проигнорировал их семейную историю рака и прописал ему препараты железа против анемии. «Я жил в Лондоне вместе с братом. Однажды к нам в гости приехал отец. Он посмотрел на меня и сказал: "Этот идиот, твой врач, ни черта не смыслит в медицине. К черту эту национальную службу здравоохранения. Я оплачу тебе обследование в частной клинике!" Вот когда колоноскопия показала, что они у меня есть». Во время хирургической операции четыре недели спустя врачи обнаружили около тридцати мелких полипов и одну огромную опухоль размером с манго. Они удалили их вместе с большей частью толстой кишки. «У меня осталось не больше тридцати – сорока сантиметров, но благодаря им я могу нормально ходить в туалет». Теперь, спустя восемь лет после операции, он ведет нормальный, активный образ жизни, хотя колоноскопия регулярно обнаруживает у него небольшие полипы. «На прошлой неделе они нашли четыре полипа. Каждый раз, когда я к ним прихожу, они находят что-то новое. Они просто отщипывают их щипцами и отправляют на гистологию. Пока они маленькие, они безвредны, но по мере роста они буквально сходят с ума и накапливают огромное количество мутаций».
Исследователь, изучающий этот тип рака, Ян Томлинсон из Оксфордского университета дал ему труднопроизносимое имя – полипоз, ассоциированный с полимеразной коррекцией (polymerase proofreading-associated polyposis). Когда молекула ДНК копирует саму себя, чтобы обеспечить копией генетического кода обе дочерние клетки, она иногда делает ошибки и вставляет в генетический код неправильное основание ДНК. Существует два специальных фермента – ДНК-полимеразы, которые обнаруживают эти ошибки и исправляют их. В том случае, когда оба кодирующих эти ферменты гена мутируют, по меньшей мере половина этих ошибок остается незамеченной, и опухоли накапливают более миллиона мутаций, притом что у большинства раковых опухолей их количество находится в диапазоне от десяти до несколько тысяч. Между тем исход для пациентов значительно варьируется, поскольку огромное количество мутаций не обязательно означает злокачественность. Нельзя точно сказать, какие именно мутировавшие гены среди этого миллиона мутаций могут вести к развитию рака. Кроме того, эта форма рака не особенно агрессивна, и на самом деле мутационная нагрузка может не вести к увеличению злокачественности, а, наоборот, дезактивировать многие важные функции в раковых клетках, приводя к их гибели.
Рак толстой кишки у Джо резко контрастирует с другими формами колоректального рака, которые развиваются преимущественно в дистальном отделе толстой кишки, ближе к прямой кишке, и, как правило, носят гораздо более выраженный злокачественный характер. При этих формах колоректального рака нет такого зашкаливающего уровня генных мутаций (изменений в отдельных генах), поскольку их механизмы репарации ДНК остаются нетронутыми. Вместо этого они, как правило, проявляют чрезвычайно высокую степень хромосомной нестабильности – особенность, которую они разделяют с подавляющим большинством других раковых заболеваний, в результате которой целые хромосомы или плечи хромосом, содержащие сотни генов, приобретают массивные структурные аномалии. Недавние исследования показали, что именно хромосомная нестабильность лежит в основе развития злокачественности и играет куда более важную роль, чем простые точечные мутации в генетическом коде.
Весь набор хромосом в ядре клетки называется кариотипом. За небольшим числом исключений, все нормальные клетки организма являются диплоидными, т. е. содержат двадцать три пары хромосом, где одна хромосома унаследована от матери, а другая от отца. Однако было установлено, что подавляющее большинство злокачественных раковых клеток значительно отклоняются от нормального состояния плоидности и все эти отклонения вызваны ошибками при митозе – наиболее распространенном способе клеточного размножения, при котором образуются две дочерние клетки с двумя абсолютно идентичными наборами хромосом.
Все начинается с процесса репликации хромосом, в результате которого образуются две одинаковые сестринские копии каждой хромосомы. Вслед за этим автоматически запускается митоз. Когда клеточная оболочка удлиняется и цитоплазма начинает делиться, чтобы создать две одинаковые клетки, происходит удвоение клеточного центра – центросомы. Эти сестринские центросомы мигрируют к разным полюсам и начинают формировать так называемое веретено деления – систему белковых микротрубочек, которые выходят из этих противоположных полюсов и присоединяются своими концами к каждой сестринской хромосоме. В конце концов, микротрубочки отделяют сестринские хромосомы друг от друга, собирают их на противоположных полюсах и плотно упаковывают, чтобы образовать ядра дочерних клеток. Все, что нарушает ход этого сложного, отлаженного процесса, приводит к тому, что части хромосом или даже целые хромосомы не прибывают к месту назначения. Аномальные митозы могут вести к гиподиплоидии, когда дочерняя клетка получает значительно меньше 46 хромосом, или же к тетраплоидии, т. е. удвоению числа хромосом. Все случаи, когда клетки содержат измененное (некратное) количество хромосом вследствие их потери или получения лишних копий, собирательно называются анеуплоидией.