Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Прочая научная литература » Под знаком кванта. - Леонид Иванович Пономарёв

Под знаком кванта. - Леонид Иванович Пономарёв

Читать онлайн Под знаком кванта. - Леонид Иванович Пономарёв
1 ... 49 50 51 52 53 54 55 56 57 ... 108
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
атоме, найденное в каждом отдельном опыте, то в конце опытов мы с удивлением обнаружим, что точки эти расположены не беспорядочно, а группируются в уже знакомые нам силуэты, объемные прообразы которых мы вычислили ранее из уравнения Шрёдингера.

Этот факт нам уже знаком из опытов по дифракции электронов. В самом деле, тогда мы не знали, в какое место фотопластинки попадет электрон, теперь мы не знаем, в каком месте атома мы его найдем. Как и прежде, сейчас мы можем указать только вероятность обнаружения электрона в каком-то определенном месте атома. В одной точке атома эта вероятность больше, в другой — меньше, но в целом распределение вероятностей образует закономерный силуэт, который мы и принимаем за форму атома.

Ничего другого нам не остается. Можно, конечно, возразить, что это не отдельный атом, а некий обобщенный образ многих атомов. Но это слабый аргумент: ведь все атомы в одном и том же квантовом состоянии неразличимы между собой. Поэтому точечные картинки, полученные в опыте по рассеянию электронов на многих, но одинаковых атомах, определяют одновременно форму и одного, отдельно взятого атома.

Здесь, как и везде, где справедливы законы случая, необходимо учитывать их особенности. Для каждого отдельного атома функция ρ(х) указывает лишь распределение вероятностей найти электрон в точке х атома. Именно в этом смысле можно говорить о «вероятностной форме отдельного атома». Но картина эта достоверна, поскольку она совершенно однозначна для любой совокупности одинаковых атомов.

Надо признать, что психологически нам легче мыслить электрон частицей. Поэтому заключение о вероятностной природе его волновых свойств мы воспринимаем с некоторым облегчением: оно не вызывает у нас такого инстинктивного протеста, как прямолинейное утверждение «электрон — это волна».

Сейчас мы достигли предела, доступного всем, кто пытается проникнуть в глубь атома без формул и уравнений. Новый образ атома верен теперь во всех деталях. Не пользуясь «математической кухней» квантовой механики, нельзя предсказать ни одного атомного явления, однако объяснить кое-что теперь можно, если использовать новый образ грамотно и помнить о его происхождении.

Как это ни странно, но создатель античной атомистики Демокрит нацело отрицал роль случайности в явлениях природы. Более того, он исповедовал ту крайнюю форму детерминизма, которую впоследствии свяжут с именем Лапласа. Только Эпикур смягчил крайности его учения, оставляя за атомами свойство и способность (он назвал их «отклонением») варьировать свой путь даже под действием одинаковых сил. (При желании в этом постулате можно усмотреть предвосхищение соотношения неопределенностей и вероятностной трактовки квантовой механики.)

Наша теперешняя картина атома бесконечно далека от представлений Демокрита. В сущности, от них сохранилась лишь исходная идея. Но плодотворные заблуждения всегда лучше, чем бесплодная непогрешимость: не будь их, Колумб никогда бы не открыл Америку.

ВЕРОЯТНОСТЬ И СПЕКТРЫ АТОМОВ

Не только форма атома, но и все процессы в нем подчиняются законам теории вероятностей. Имея дело с отдельным атомом, никогда нельзя сказать наверняка, где находится его электрон, куда он попадет в следующий момент и что произойдет при этом с самим атомом. Однако уравнения квантовой механики всегда позволяют вычислить вероятности всех этих процессов. Вероятностные предсказания можно затем проверить и убедиться, что они достоверны, если провести достаточно много одинаковых испытаний. Даже такие люди, как Резерфорд, далеко не сразу поняли эту особенность квантовых процессов.

Он был первым читателем тогда еще рукописной статьи Бора о строении атомов. Возвращая рукопись, Резерфорд с присущей ему прямотой и резкостью спросил Бора: «А откуда электрон, сидящий на n-й орбите, знает, куда ему надо прыгнуть: на k-ю или на l-ю орбиту?» Тогда, в 1913 г., у Бора не было убедительного ответа. Теперь можно было бы ответить так: электрон ничего не знает заранее — он следует квантовым законам. Согласно этим законам всегда существует строго определенная вероятность перехода электрона из состояния с номером n в любое другое состояние (например, в состояние k). Как всегда, вероятность Wnk такого перехода — это число, значение которого зависит от выбора пары квантовых состояний n и k. Перебирая всевозможные комбинации номеров n и k, получим квадратную таблицу чисел Wnk, которая представляет внутреннее состояние атома и, как теперь известно, называется матрицей. С ее помощью можно, например, объяснить, почему в желтом дублете D-линии натрия линия D2 в два раза интенсивнее, чем линия D1. Последовательно используя уравнения квантовой механики, можно понять также и более тонкие особенности строения этих линий, например законы изменения интенсивности внутри них самих. Понятно, однако, что все эти радости доступны только профессионалам.

ПРИЧИННОСТЬ И СЛУЧАЙНОСТЬ ВЕРОЯТНОСТЬ И ДОСТОВЕРНОСТЬ

Вероятностная интерпретация квантовой механики очень многим пришлась не по душе и вызвала многочисленные попытки возврата к прежней, классической схеме описания. Это стремление во что бы то ни стало использовать старые знания в новых условиях по-человечески понятно, но ничем не оправдано. Оно напоминает желание отставного солдата осмыслить все многообразие жизни с позиций строевого устава. Безусловно, его возмутит беспорядок в дискоклубе, и довольно трудно будет объяснить ему, что там действуют несколько иные законы, чем на армейском плацу.

Еще не так давно недобросовестные интерпретаторы квантовой механики с подозрительным рвением пытались отменить ее только на том основании, что она не укладывалась в рамки ими же придуманных схем. Они возмущались «свободой воли», которая якобы дарована электрону, шельмовали соотношение неопределенностей и всерьез доказывали, что квантовая механика — бесполезная наука, коль скоро она толкует не о реальных событиях, а об их вероятностях. Те, кто внимательно проследил предыдущие рассуждения, понимают всю вздорность подобных обвинений. Но даже те, кто относится уважительно к теории атома, не всегда четко сознают, как понимать причинность атомных явлений, если каждое из них случайно, и насколько достоверны ее предсказания, если все они основаны на понятии вероятности.

Житейское понятие причинности — «всякое явление имеет свою причину» — не требует объяснений, но для науки бесполезно. Причинность в науке требует закона, с помощью которого можно проследить последовательность событий во времени. На языке формул этот закон принимает вид дифференциального уравнения, которое называют уравнением движения. В классической механике такие уравнения — уравнения движения Ньютона — позволяют предсказать траекторию движения частицы, если точно задать ее начальную скорость и координату. Именно такая, бегло очерченная, схема объяснения и предсказания явлений природы всегда составляла идеал причинного описания в классической физике. Она не оставляет места для сомнений и кривотолков, и чтобы подчеркнуть это ее качество, в дальнейшем причинность классической физики назвали детерминизмом.

Такой причинности в квантовой физике нет.

1 ... 49 50 51 52 53 54 55 56 57 ... 108
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?