Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Науки: разное » Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь

Читать онлайн Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь
1 ... 49 50 51 52 53 54 55 56 57 ... 129
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
предопределило все дальнейшее развитие античной науки о музыке. «Античное музыковедение в отличие от современного не ставило своей задачей анализ конкретных музыкальных сторон произведения... Характерной его чертой было стремление к математическому описанию акустических особенностей музыкальной практики».[652] Не случайно среди авторов музыкально-теоретических трактатов было так много выдающихся математиков: Архит, Евклид, Эратосфен, Птолемей. Пифагорейская теория музыки оставалась до конца античности главным образцом в этой области,8 имея лишь одного конкурента — теорию Аристоксена. Хотя Аристоксен и был учеником пифагорейца Ксенофила, он выступил против математической трактовки музыки, ратуя за большее доверие к слуху. Однако и он не мог полностью отказаться от тех приемов изучения музыки, которые сложились в пифагорейской школе.[653]

В основе пифагорейских исследований музыкальной гармонии лежала уверенность в том, что ее можно выразить с помощью простых числовых соотношений. Что же заставило Пифагора искать числовые закономерности в природе, что дало непосредственный импульс к поверке гармонии числом? Правдоподобный ответ на этот вопрос дает космологическая модель Анаксимандра, также представляющая собой попытку применения простых числовых соотношений в объяснении видимого мира. Земля Анаксимандра представляет собой плоский цилиндр, диаметр которого в три раза больше его высоты, а расстояние между небесными телами кратно девяти. Числовые соотношения Анаксимандра были, конечно, чисто спекулятивного происхождения и ни в коей мере не отражали реальной структуры космоса,[654] но в эвристическом плане его идеи могли дать импульс для поисков в природе более точных и выверенных отношений.

Геометрический космос Анаксимандра — это лишь один из примеров господствовавших тогда представлений, в которых отражается столь присущая мировосприятию греков любовь к симметрии, нашедшая яркое выражение в их архитектуре и скульптуре. Разумеется, греческая культура была в этом отношении отнюдь не уникальна. Ее особенность состоит лишь в том, что представления о числовом порядке и геометрической симметрии проявились в ней не только в мифах, фольклоре или арифмологии, но и в зарождающейся науке. Для современника Пифагора Гекатея Милетского тоже характерно стремление уложить доступные грекам географические знания в прокрустово ложе симметричных схем.[655] В греческой медицине мы также наблюдаем поиски неких числовых соотношений, например пропорций пищи по отношению к физическим упражнениям (De victu. 1,2). В гиппократовском трактате «О седмерицах» число семь служит своеобразным структурным принципом, способным организовать все многообразие мира в простую схему.

Попытки Пифагора найти числовую основу музыкальной гармонии лежат, таким образом, в основном русле развития тогдашних отраслей знания — астрономии, географии, медицины. Разница заключается лишь в том, что, в отличие от медицины, в музыке числовые отношения действительно существуют, а найти их с помощью доступных пифагорейцам методов оказалось гораздо проще, чем в астрономии.

Что представляла собою гармоника в период между Пифагором и Архитом? Свидетельств на этот счет весьма мало, но и они позволяют проследить некоторые линии ее развития. Пифагор установил, какие числовые соотношения, в соответствии с длиной струны, выражают наиболее устойчивые гармонические интервалы. Октава была выражена через отношение 12:6 (2:1), кварта — 12:9 (4:3) и квинта — 12:8 (3:2). Все эти числа образуют уже знакомую нам «музыкальную» пропорцию (12:9 = 8:6), в которой 8 является средним гармоническим, а 9 средним арифметическим между двумя крайними членами.[656] Характерно при этом, что числа, выражающие первые три гармонических интервала, составляют известную пифагорейскую тетрактиду (1, 2, 3, 4). Этот факт наложил свой отпечаток на пифагорейскую гармонику, которая исходила впоследствии из того, что все гармонические интервалы могут быть выражены с помощью чисел, входящих в тетрактиду. Соответственно те интервалы, которые не укладывались в эти числа, гармоническими не считались.

Деление октавы на квинту и кварту (2:1 = 3/2 : 4/3) было, вероятно, известно уже Пифагору. Установление того факта, что октава не может быть разделена на две равные части, ибо геометрическое среднее между входящими в нее числами равно /2, следует связывать с Гиппасом, открывшим иррациональность; К найденным Пифагором трем интервалам Гиппас, по свидетельству Боэция (18 А 14), добавил еще два: двойную октаву (4:1) и дуодециму, состоящую из октавы и квинты (3:1).[657] Оба новых интервала по-прежнему выражались с помощью первых четырех чисел. Именно эти пять интервалов, по словам Птолемея (Harm. 1,5, р. 11 ff), пифагорейская теория музыки признавала созвучными, оставляя в стороне другие, например ундециму (8:3).[658] Весьма вероятно, что именно Гиппас исключил ундециму из числа созвучных интервалов.[659]

Теоретическим обоснованием этого служил, разумеется, не только тот факт, что ундецима не укладывалась в рамки тетрактиды. Судя по свидетельствам Птолемея и Боэция (18 А 14),[660] пифагорейская гармоника во времена Гиппаса представляла собой уже развитую теорию. Ноты одинаковой высоты сравнивались в ней с равными числами, а разной высоты с неравными. Все числа при этом должны были быть целыми. Тона неравной высоты делились на симфонные (созвучные), т. е. такие, которые сливаются при одновременном появлении, и диафонные, которые, хотя и признавались музыкальными, к созвучным не относились. С симфонными интервалами сравнивались числа, состоящие друг с другом в двух типах отношений: эпиморных и кратных.

Эпиморным называлось отношение чисел α и 6, в котором а равно b плюс часть b (а = b + b/n), следовательно, а:b = (n + 1) : n. Этому соотношению удовлетворяют, например, кварта (4:3) и квинта (3:2). Кратным же отношением считалось такое, при котором b является частью а (а = nb), следовательно, а:b = n:1. Под это соотношение, которое пифагорейцы признавали наилучшим, подходит, например, октава (2:1) или дуодецима (3:1). В то же время ундецима (8:3) вообще не считалась симфонным интервалом, так как ее отношение не является ни эпиморным, ни кратным.

При разделении интервалов использовались арифметическое и гармоническое среднее, т. е. интервалы делились на неравные части. Например, октава делилась на квинту и кварту, разница между которыми составляла целый тон. Из величин, входящих в «музыкальную» пропорцию, можно было установить числовые соотношения более мелких интервалов. Если разница квинты и кварты дает целый тон (3/2 : 4/3 = 9/8), то, в свою очередь, вычитая из кварты два тона, мы получаем малый полутон: 12:9 — 2(9:8) = 256:243, а вычтя его из целого тона, — большой полутон, так называемую апотоме (2187:2048). Именно эти соотношения мы встречаем у Филолая (44 В 6), суммировавшего (а возможно, и самостоятельно развившего) предшествующую ему школьную традицию.

Архит, завершивший развитие пифагорейской гармоники, доказал в общем виде невозможность нахождения рационального среднего геометрического между числами nη + 1 и n, находящимися в эпиморном отношении (47 А 19), и тем самым, невозможность разделения эпиморных интервалов на

1 ... 49 50 51 52 53 54 55 56 57 ... 129
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?