Категории
Самые читаемые
ChitatKnigi.com » 🟠Детская литература » Детская образовательная литература » Путешествие по Карликании и Аль-Джебре - Владимир Артурович Левшин

Путешествие по Карликании и Аль-Джебре - Владимир Артурович Левшин

Читать онлайн Путешествие по Карликании и Аль-Джебре - Владимир Артурович Левшин
1 ... 48 49 50 51 52 53 54 55 56 ... 62
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
8 > 9.

— Ага! Неравенство сохранилось, — обрадовался Сева.

— Да, — сказал Весовщик, — но теперь левая часть стала больше правой, а не меньше, как мы условились.

— Почтенный Весовщик, — вмешался Олег, — вы хотите сказать, что, подставив в левую часть этого неравенства 4 + 8, справа можно подставить любое число, но при одном условии: оно должно быть больше двенадцати. Тогда левая часть всегда будет меньше правой.

— Вот именно, вот именно! — умилился Весовщик и так закивал головой, что вот-вот борода отвалится! Потом он перестал кивать и взглянул на Севу.

Тот стоял надутый, взъерошенный, как воробей после драки.

— Вижу, — сказал Весовщик, — тебе во что бы то ни стало хочется подставлять любые числа под все буквы. Так и быть, попробуй ещё разок.

На весах засветилось равенство:

За + 2b = 2a + ЗЬ — b + а.

— Нет уж, спасибо! — Сева даже руками замахал. — Теперь меня не проведёшь.

— Зря отказываешься. В этом примере можно подставлять вместо а и b любые числа, какие вздумается.

Весовщик подставил вместо а Четвёрку, вместо b — Тройку:

3 • 4 + 2 • 3 = 2 • 4 + 3 • 3 — 3 + 4.

И сейчас же числа эти исчезли, уступив место числу 18 на каждой чашке весов:

18 = 18.

Сева растерянно поморгал глазами. Опять он попал впросак. Но почему?

— Да потому, — ответил Весовщик, — что это равенство особое. Оно называется тождеством. Какими числами ни заменяй буквы в тождестве, равенство всё равно сохранится.

— Но как отличить тождество от обычного равенства, не подставляя чисел вместо букв? — спросила я.

— Для этого надо обе части равенства сделать совершенно одинаковыми. Смотрите!

Мы увидели на весах прежнее тождество:

За + 2Ь = 2а + ЗЬb + а.

Тут Весовщик протянул руки к правой чашке весов и как закричит:

— Подобные, приведитесь!

И сейчас же 2а в правой части соединились ещё с одним а; ЗЬ, из которых вычли одно Ь, превратились в 2Ь, и на весах образовалось другое выражение:

За + 2Ь = За + 2Ь.

Покончив с тождеством, Весовщик взмахнул палочкой, и на ней очутился металлический обруч. С таким у нас занимаются художественной гимнастикой.

Я чуть не фыркнула: неужели Весовщик собирается танцевать с обручем? Вот будет весело! Но танцевать он не стал, а достал верёвочку и измерил ширину круга в самом его широком месте.

— Эта ширина называется диаметром круга, — пояснил он. Хотя кто же этого не знает?

Потом Весовщик стал укладывать этот верёвочный диаметр по обручу, чтобы измерить длину окружности. Сделал отметку, уложил верёвочку один раз, второй, третий, но до отметки все ещё не дошёл. Выходит, длина окружности больше, чем три её диаметра. Весовщик стал откладывать верёвочку в четвёртый раз, но её оказалось слишком много. На глаз получалось, что надо отложить только одну пятую верёвочки. Весовщик отрезал одну пятую, но и этот кусочек оказался длиннее, чем нужно. Значит, длина окружности меньше, чем три и одна пятая диаметра.

Тогда Весовщик разрезал этот кусочек верёвки пополам, и он стал равен одной десятой диаметра. Но теперь его не хватило до отметки. Значит, длина окружности меньше, чем три и одна пятая, но больше, чем три и одна десятая диаметра.

Долго Весовщик возился с этой задачей, а потом улыбнулся и сказал:

— О мои юные друзья, я пошутил. Я и раньше знал, что решить эту задачу точно невозможно. Мне только хотелось, чтобы вы убедились в этом сами. Во сколько раз длина окружности больше своего диаметра, можно подсчитать только приближённо. Вычислите это число с точностью хоть до миллиона знаков, оно всё равно не будет совершенно точным.

— Значит, это — иррациональное число? — спросил Олег.

— Конечно! — подтвердила Эф. — Мы можем указать, где оно живёт на монорельсовой дороге, но выразить его точным числом нельзя. В Аль-Джебре его обозначают греческой буквой Пи — π. Смотрите, вот оно.

На левую чашку весов вспорхнула буковка, слегка напоминающая русское «п», а на правой появилось число 3,14.

— Число Пи приближённо равно трём целым и четырнадцати сотым, — объяснил Весовщик.

Он взмахнул палочкой. Чашка с буквой Пи чуть-чуть опустилась, а в кошачьем глазке появились две волнистые линии: .

— Это знак приближённого равенства, — пояснила Эф. — На самом деле Пи немножко больше чем 3,14. Поэтому левая чашка слегка перевешивает.

Снова стукнулись два медных подноса, и Главный Весовщик исчез. Прямо-таки растаял.

— Перерыв на пятнадцать минут! — объявила Эф.

Как ты думаешь, может, и мне объявить небольшой перерыв?

Таня.

Аль-джебр!

(Сева — Нулику)

Знаешь, Нулик, напрасно я злился на этого Весовщика. Он даже почище фокусника. Фокусников и у нас пруд пруди. А настоящего живого чародея днём с огнём не сыщешь.

В перерыве я подговаривал ребят смыться. Сколько можно возиться с неравенствами, равенствами и всякими Пи? Пришли составлять уравнение, так чего там!.. Но Олег сказал, что сперва неплохо бы выяснить, что такое уравнение. Ах да! Я и позабыл.

Снова стукнулись медные подносы, вернулась наша Эф, и мы опять уселись на коврики.

Только я хотел спросить, где же Весовщик, а он уж тут как тут! Сидит под весами, словно никуда не исчезал.

Весовщик взмахнул палочкой, и над каждой чашкой весов появилось по числу 14. В глазке засверкал знак равенства.

«Здравствуйте! — подумал я. — Всё сначала!»

Но я ошибался. Кроме чисел 14, на каждой чашке весов появилось по Пятёрке:

14 + 5 = 14 + 5.

Чашки не дрогнули, глазок по-прежнему показывал равенство. По том вместо этих чисел на весы стали две суммы:

а + b = с + d.

И снова подле каждой из них засветились одинаковые числа, на этот раз Тройки:

a + b + 3 = c + d + 3

Чашки не шелохнулись.

— Видите, — сказал Главный Весовщик, — если к обеим частям прибавить по одинаковому числу, равенство не нарушится. Понятно, что можно не только прибавить, но и вычесть по одинаковому числу. Можно умножить обе части или разделить их на одинаковые числа,

1 ... 48 49 50 51 52 53 54 55 56 ... 62
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈