Пятьсот двадцать головоломок - Генри Дьюдени
Шрифт:
Интервал:
Закладка:
64. Снова о велосипеде. Дополним условие предыдущей задачи третьим участником, который пользуется тем же велосипедом. Предположим, что Андерсон и Браун взяли с собой человека по имени Картер. Они делают пешком соответственно по 4,5 и 3 км/ч, а на велосипеде — по 10, 8 и 12 км/ч. Как им следует пользоваться велосипедом, чтобы преодолеть за одно и то же время расстояние 20 км?
65. Мотоцикл с коляской. Аткинс, Болдуин и Кларк решили совершить путешествие. Их путь составит 52 км. У Аткинса есть мотоцикл с одноместной коляской. Он должен подвезти одного из своих товарищей на какое-то расстояние, высадить его, чтобы тот дальше шел пешком, вернуться назад, подобрать другого товарища, который вышел одновременно с ними, и поехать дальше так, чтобы все трое прибыли в пункт назначения в одно и то же время. Как это сделать?
Скорость мотоцикла 20 км/ч, Болдуин может идти пешком со скоростью 5, а Кларк — 4 км/ч. Разумеется, каждый старается двигаться как можно быстрее и в пути нигде не задерживается.
Задачу можно было бы усложнить введением большего числа пассажиров, а в нашем случае она настолько упрощена, что даже все расстояния выражаются целым числом километров.
66. Связной. Армейская колонна длиной 40 км проходит 40 км. Сколько километров проделает связной, посланный с пакетом из арьергарда в авангард и возвратившийся назад?
67. Два поезда. Два железнодорожных состава, один длиной 400, а другой 200 футов, движутся по параллельным путям. Когда они движутся в противоположных направлениях, то каждый проходит мимо другого за 5 с, а когда они идут в одном направлении, то более быстрый проходит мимо другого за 15 с. Один любопытный пассажир, используя эти данные, сумел определить скорость обоих поездов[5].
68. От Пиклминстера до Квиквилля. Два поезда А и В отправляются из Пиклминстера в Квиквилль одновременно с поездами С и D, отправляющимися из Квиквилля в Пиклминстер. Поезд А встречает поезд С за 120 миль, а поезд D за 140 миль от Пиклминстера. Поезд В встречает поезд С за 126 миль от Квиквилля, а поезд D — на полпути между Пиклминстером и Квиквиллем. Каково расстояние от Пиклминстера до Квиквилля? Все поезда идут с постоянными скоростями, не слишком отличающимися от обычных.
69. Неисправный паровоз. Мы отправились по железной дороге из Англчестера в Клинкертон. Но через час после того, как поезд тронулся, обнаружилась неисправность паровоза. Нам пришлось продолжать путешествие со скоростью, составлявшей ¾ первоначальной. В результате мы прибыли в Клинкертон с опозданием на 2 ч, а машинист сказал, что если бы поломка произошла на 50 миль дальше, то поезд пришел бы на 40 мин раньше.
Каково расстояние от Англчестера до Клинкертона?
70. Головоломка с бегунами. Два человека бегут по кругу в противоположных направлениях. Браун — лучший бегун — дал Томкинсу фору в ⅛ дистанции, но переоценил свои силы: пробежав ⅙ дистанции, он встретил Томкинса и понял, что его собственные шансы на успех весьма малы.
На сколько быстрее должен теперь бежать Браун, чтобы догнать соперника? Эта головоломка окажется очень простой, если вы как следует поймете ее условия.
71. Два корабля. Два корабля выходят из одного порта в другой, расположенный за 200 морских миль от первого, и возвращаются назад. «Мэри Джейн» идет в одном направлении со скоростью 12 миль/ч, а на обратном пути — со скоростью 8 миль/ч, затрачивая на все путешествие 41⅔ ч. «Элизабет Энн» делает в обоих направлениях по 10 миль/ч, затрачивая на все путешествие 40 ч.
Мы видим, что оба корабля идут со средней скоростью 10 миль/ч. Почему же «Мэри Джейн» затрачивает на весь путь больше времени, чем «Элизабет Энн»? Как объяснить этот небольшой парадокс?
72. Определите расстояние. Джонс вышел из A в B и по дороге в 10 км от A встретил своего приятеля Кенворда, который вышел из B одновременно с ним. Дойдя до B, Джонс немедленно повернул обратно. То же сделал и Кенворд, дойдя до A. Приятели снова встретились, но уже в 12 км от B. Разумеется, каждый шел с постоянной скоростью, Каково расстояние между A и B?
Существует простое правило, с помощью которого каждый сможет найти искомое расстояние в уме за несколько секунд. Если знать, как нужно действовать, то задача решается необычайно просто.
73. Человек и собака.
— Прогулки с собакой, — сказал мне как-то приятель-математик, — дают мне обильную пищу для размышлений. Однажды, например, мой пес, подождав, пока я выйду на улицу, посмотрел, куда я собираюсь направиться, и, когда я пошел по дорожке, помчался по ней до конца. Затем он возвратился ко мне, снова добежал до конца дорожки и снова вернулся и так проделал 4 раза. Все это время он двигался с постоянной скоростью и, когда последний раз бежал ко мне, преодолел остаток пути в 81 м. Измерив потом расстояние от моей двери до конца дорожки, я обнаружил, что оно составляет 625 м. С какой скоростью бегал мой пес, если я шел со скоростью 4 км/ч?
74. Собака Бакстера. Вот интересная головоломка, дополняющая предыдущую. Андерсон покинул отель в Сан-Ремо в 9 ч и находился в пути целый час, когда Бакстер вышел вслед за ним по тому же пути. Собака Бакстера выскочила одновременно со своим хозяином и бегала все время между ним и Андерсоном до тех пор, пока Бакстер не догнал Андерсона. Скорость Андерсона составляет 2, Бакстера — 4 и собаки — 10 км/ч. Сколько километров пробежала собака к моменту, когда Бакстер догнал Андерсона?
Читатель, приславший мне эту задачу, будучи человеком педантичным, счел нужным особо оговорить, что «длиной собаки и временем, затраченным на повороты, можно пренебречь». Я бы со своей стороны добавил, что в равной мере можно пренебречь кличкой собаки и днем недели.
75. Исследование пустыни. Девять участников экспедиции (каждый на автомашине) встречаются на восточной окраине пустыни. Они хотят исследовать ее внутренние районы, двигаясь все время на запад. Каждому автомобилю полного бака (содержащего 1 галлон бензина) хватает на 40 миль пути. Кроме того, он может взять с собой еще 9 канистр бензина по галлону каждая (но не больше). Целые канистры можно передавать с одного автомобиля на другой. На какое максимальное расстояние исследователи могут проникнуть в пустыню, не создавая складов топлива, необходимого для возвращения назад?
76. Исследование горы. Участник экспедиции профессор Уокинхолм получил задание со всех сторон на заданной высоте обследовать гору. Ему предстоит одному преодолеть пешком 100 миль вокруг горы. Профессор способен делать по 20 миль в день, но взять с собою продуктов он в состоянии лишь на два дня. Для удобства каждый дневной рацион упакован в запечатанную коробку. Ежедневно профессор проходил свои 20 миль и расходовал дневной рацион. За какое наименьшее время он мог обойти гору?
Эту задачу по праву можно отнести к числу наиболее захватывающих среди рассмотренных нами до сих пор головоломок. От профессора Уокинхолма потребуется немало изобретательности. Идею задачи предложил Г. Ф. Хит.
77. Ленч в час дня. Один читатель написал нам, что дом его друга в А, куда он был приглашен на ленч в час дня, расположен в 1 км от его собственного дома в В. В 12 ч он выехал в своем инвалидном кресле на колесах из В по направлению к С на прогулку. Его друг, решив присоединиться к нему и помочь добраться к назначенному часу на ленч, вышел в 12.15 из А по направлению к С со скоростью 5 км/ч. Друзья встретились и направились в A со скоростью 4 км/ч. Прибыли туда они ровно в час дня.
Какое расстояние проехал наш читатель по направлению к С?
78. Гуляющий пассажир. Поезд движется со скоростью 60 км/ч. Пассажир из хвоста поезда идет в его начало по переходам между вагонами со скоростью 3 км/ч. С какой скоростью он движется относительно железнодорожного полотна?
Мы не собираемся в данном случае заниматься софизмами, вроде апории Зенона с летящей стрелой, или теорией относительности Эйнштейна, а говорим о движении в обычном смысле слова по отношению к железнодорожному полотну.
79. Встречные поезда. На станции Вюрцльтаун одна старая леди, выглянув из окна, крикнула:
— Дежурный! Сколько отсюда ехать до Мадвилля?
— Все поезда идут 5 часов в любую сторону, мэм, — ответил тот.
— А сколько поездов встретится мне по пути?
Этот нелепый вопрос озадачил дежурного, но он с готовностью ответил:
— Поезда из Вюрцльтауна в Мадвилль и из Мадвилля в Вюрцльтаун отходят в пять минут первого, пять минут второго и так далее с интервалом ровно в один час.