Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Биология » Глаз, мозг, зрение - Дэвид Хьюбел

Глаз, мозг, зрение - Дэвид Хьюбел

Читать онлайн Глаз, мозг, зрение - Дэвид Хьюбел
1 2 3 4 5 6 7 8 9 10 ... 65
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

2. Импульсы, синапсы и нейронные сети

Значительную часть нейробиологии составляют разделы о том, как работают отдельные нейроны и как информация передается от клетки к клетке через синапсы. Должно быть очевидным, что без этих сведений мы окажемся в положении человека, желающего понять работу радиоприемника или телевизора, но ничего не знающего о резисторах, конденсаторах и транзисторах. За последние десятилетия благодаря изобретательности ряда нейрофизиологов, из которых наиболее известны Эндрю Хаксли, Алан Ходжкин, Бернард Катц, Джон Экклз и Стивен Куффлер, были хорошо изучены физико-химические механизмы проведения нервных импульсов и синаптической передачи. Однако столь же очевидно, что сведения такого рода сами по себе еще не могут привести к пониманию работы мозга, подобно тому как одни лишь сведения о резисторах, конденсаторах и транзисторах не позволят понять работу радиоприемника или телевизора, а знание химии чернил — прочитать пьесу Шекспира.

Эту главу я начинаю с суммирования части того, что нам известно о нервном проведении и синаптической передаче. Большой подмогой в верном понимании существа дела будет знание основ физической химии и электричества, но я думаю, что и без этого читатель сможет получить о предмете достаточное представление. В любом случае для того, чтобы следить за изложением в последующих главах, вам понадобится лишь элементарное понимание этих вопросов.

Задача нервной клетки состоит в том, чтобы принимать информацию от клеток, которые ее передают, суммировать, или интегрировать, эту информацию и доставлять интегрированную информацию другим клеткам. Информация обычно передается в форме кратковременных процессов, называемых нервными импульсами. Во всякой клетке каждый импульс бывает точно таким же, как и любой другой, т.е. импульс — это стереотипный процесс. В любой момент частота импульсов, посылаемых нейроном, определяется сигналами, только что полученными им от передающих клеток, и передает информацию клеткам, по отношению к которым этот нейрон является передающим. Частота импульсов варьирует от одного в каждые несколько секунд или еще ниже до максимума около тысячи в секунду.

Мембранный потенциал

Что происходит, когда информация передается от одной клетки к другой через синапс? В первой — пресинаптической — клетке около основания аксона возникает электрический сигнал, или импульс. Импульс перемещается по аксону к его окончаниям. Из каждого окончания в результате этого импульса в узкий (0,02 мкм) заполненный жидкостью промежуток, отделяющий одну клетку от другой, — синаптическую щель — высвобождается химическое вещество, которое диффундирует ко второй — постсинаптической — клетке. Оно влияет на мембрану этой второй клетки таким образом, что вероятность возникновения в ней импульсов либо уменьшается, либо возрастает. После этого краткого описания вернемся назад и рассмотрим весь процесс подробно.

Рис. 8. Схема расположения нервных клеток на поперечном срезе сетчатки, нарисованная Сантьяго Рамон-и-Кахалом, величайшим нейроанатомом всех времен. От верхнего слоя, где показаны более тонкие палочки и более толстые колбочки, до нижнего, где направо выходят волокна зрительного нерва, толщина сетчатки составляет четверть миллиметра.

Нервная клетка омывается солевым раствором и содержит его внутри. В число солей входит не только хлористый натрий, но также хлористый калий, хлористый кальций и ряд других, менее обычных солей. Поскольку большинство молекул соли диссоциировано, жидкости как внутри, так и снаружи клетки содержат ионы хлора, калия, натрия и кальция (Cl–, K+, Na+ и Ca2+).

В состоянии покоя электрические потенциалы внутри и снаружи клетки различаются примерно на одну десятую долю вольта, причем плюс находится снаружи. Точное значение ближе к величине 0,07 вольта, или 70 милливольт. Передаваемые нервами сигналы представляют собой быстрые изменения потенциала, перемещающиеся по волокну от тела клетки к окончаниям аксона. Я начну с описания того, как на клеточной мембране возникает разность потенциалов.

Мембрана нервной клетки, покрывающая весь нейрон, — структура чрезвычайно сложная. Она не сплошная, как надувной шарик или шланг, а содержит миллионы «пор», через которые вещества могут переходить с одной стороны на другую. Некоторые из них — это действительно поры различной величины; как сейчас выяснилось, они представляют собой белки в форме трубок, насквозь пронизывающих жировое вещество мембраны. В других случаях это не просто поры, а миниатюрные белковые механизмы, называемые насосами; они способны улавливать ионы одного типа и выбрасывать их из клетки, одновременно захватывая другие ионы внутрь из наружного пространства. Такая перекачка требует затраты энергии, которую клетка в конечном счете получает в процессе окисления глюкозы. Существуют также поры, называемые каналами, — это «клапаны», которые могут открываться и закрываться. Какие воздействия приводят к их открытию или закрытию, зависит от типа пор. На некоторые из них влияет мембранный потенциал, другие открываются или закрываются при наличии определенных веществ во внутренней и наружной жидкости.

Рис. 9. На этой электронной микрофотографии (срез коры мозжечка крысы) синапс выглядит как узкая темная полоска в нижней части рисунка посередине. Слева от синапса можно видеть поперечное сечение аксона, заполненного мельчайшими круглыми синаптическими пузырьками, в которых хранится нейромедиатор. Справа от синапса виден выступ дендрита (называемый шипиком); он отходит от крупной дендритной ветви, расположенной горизонтально в верхней части рисунка (два темных колбасовидных образования в этом дендрите — митохондрии). В синапсе сближены две мембраны — мембраны аксона и дендрита; здесь они утолщены и выглядят более плотными. Их разделяет щель шириной 20 нанометров.

Разность потенциалов на мембране в любой момент определяется концентрацией ионов внутри и снаружи, а также тем, открыты или закрыты различные поры. (Выше я говорил, что потенциал влияет на поры, а теперь утверждаю, что поры влияют на потенциал. Давайте пока просто скажем, что эти две вещи могут быть взаимозависимы. Несколько позже будет дано более детальное объяснение.) Так как имеется несколько видов пор и несколько видов ионов, легко понять, что вся система довольно сложна. Когда Ходжкин и Хаксли в 1952 году сумели разобраться в ней, это было огромным достижением.

Зададимся прежде всего вопросом: как создается разность потенциалов? Предположим, что вначале никакой разности нет и концентрации ионов внутри и снаружи одинаковы. Пусть далее включается насос, который выводит из клетки ионы одного вида, например натрия, и вместо каждого выведенного иона переносит внутрь ион другого вида, например калия. Сам по себе насос не создает какого-либо потенциала, так как сколько положительно заряженных ионов накачивается внутрь, столько же и откачивается (ионы натрия и калия несут одинаковые положительные заряды). Но представим теперь, что по какой-то причине открылось большое число пор одного типа, например калиевых. Ионы калия начнут перетекать по ним, причем скорость потока через каждую открытую пору будет зависеть от концентрации калия: чем больше ионов возле отверстия поры, тем больше будет их утечка через мембрану; а так как внутри ионов калия больше, чем снаружи, то выходить их будет больше, чем входить внутрь. Но если выходит больше зарядов, чем входит, наружное пространство быстро станет электроположительным по отношению к внутреннему. Это накопление положительного заряда снаружи вскоре начнет противодействовать дальнейшему выходу ионов калия из клетки, так как одноименные заряды отталкивают друг друга. Очень быстро — прежде чем выход ионов K+ приведет к заметному изменению их концентрации — положительный заряд снаружи достигнет величины, при которой он в точности скомпенсирует тенденцию ионов K+ выходить из клетки (с внутренней стороны поры ионов калия больше, но они отталкиваются наружным зарядом). Начиная с этого момента перемещение заряда прекращается, и мы говорим, что система приходит в равновесие. Таким образом, открытие калиевых пор приводит к возникновению на мембране разности потенциалов с положительным полюсом снаружи.

Но предположим, что вместо этого открылись натриевые поры. Повторяя все рассуждения с заменой слов «внутренний» на «наружный», вы можете легко убедиться, что результат будет прямо противоположным: снаружи возникнет отрицательный заряд. При одновременном открытии пор того и другого типа результат был бы «компромиссным». Для оценки величины мембранного потенциала мы должны знать относительные концентрации двух ионов и отношение числа открытых и закрытых пор для каждого иона, а затем произвести соответствующие расчеты.

1 2 3 4 5 6 7 8 9 10 ... 65
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?