Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Математика » Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - Gustavo Pineiro

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - Gustavo Pineiro

Читать онлайн Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - Gustavo Pineiro
1 2 3 4 5 6 7 8 9 10 ... 26
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Это распределение по парам доказывает, что натуральных чисел столько же, сколько их квадратов, и противоречит сказанному выше — тому, что натуральных чисел больше. Так что же верно? Как решить этот парадокс? Галилей отвечает так:

«[...] понятия «больший», «меньший», «равный» не имеют места не только между бесконечно большими, но и между бесконечно большим и конечным».

Другими словами, он приходит к выводу, что абсурдно сравнивать группы с бесконечными членами и нельзя сказать, что одна бесконечная группа больше, меньше или равна другой бесконечной группе. И тем не менее примерно 250 лет спустя Георг Кантор решил измерить и сравнить бесконечные группы и сделал выводы, которые и Галилей, и Аристотель сочли бы неприемлемыми. Об этом следующая глава.

«КНИГА ПЕСКА»

«Книга песка» — это рассказ аргентинского писателя Хорхе Луиса Борхеса (1899-1986) из одноименного сборника, опубликованного в 1975 году. В нем протагонист, сам Борхес, покупает у уличного торговца книгу. Выясняется, что в ней бесконечное количество страниц. У нее нет ни начала, ни конца; открыв какую-то страницу, ее невозможно найти вновь. Этот чудовищный предмет внушает Борхесу страх, но он боится, что и огонь, который сожжет бесконечную книгу, будет «тоже бесконечным», и вся планета задохнется от его дыма. Тогда Борхес решает спрятать ее на первой попавшейся полке в Национальной библиотеке Буэнос- Айреса.

Хорхе Луис Борхес, 1976 год.

ГЛАВА 2

Кардинальные числа

Аристотель, Галилей и многие другие мыслители, жившие до XIX века, безапелляционно заявляли, что говорить о количестве членов бесконечного множества не имеет никакого смысла. В 1870-е годы этот подход был еще настолько распространен, что из осторожности никто бы не поставил его под вопрос, тем более в научной статье. Однако в 1874 году Кантор впервые ввел понятие «количества элементов бесконечного множества» и обозначил его как «кардинальное число (или мощность) множества».

Получив докторскую степень, еще в Берлине Кантор опубликовал три статьи в Zeitschrift fur Mathematik und Physik («Физико-математический журнал»): одну в 1868-м, а другие две — в 1869 году. В первой он рассматривал классическую арифметическую задачу и решал ее методами, которые даже по тем временам не были инновационными, зато в двух других приблизился к тому, что впоследствии обрело форму теории бесконечности.

Обе эти статьи были посвящены вычислению. В первой статье — (Jberdie einfachen Zahlensysteme («О простых числовых системах») — рассматривалось одно свойство иррациональных чисел, во второй — Zwei Satze iiber eine gewisse Zerlegung der Zahlen in unendliche Produckte («Две теоремы о разложении чисел на бесконечные множители») — возможность представить определенные числа как результат бесконечных произведений.

Тема «бесконечного произведения» затрагивала область исчисления, но надо пояснить, что здесь речь шла о потенциальной бесконечности. Так, если умножить 0,5 само на себя «бесконечное количество раз», то в результате получится 0, но это надо понимать в том смысле, что чем больше раз мы совершим это умножение, тем ближе мы подойдем к 0. Действительно, если мы перемножим 0,5 дважды, то получим 0,25; трижды — 0,125; четырежды — 0,0625, и так далее. Результат будет постепенно приближаться к 0. Здесь суть заключается в приближении, а не в актуально бесконечном произведении 0,5.

В наши дни [...] доказательства [...] Кантора по праву украшают мировой музей истории математики.

Мартин Гарднер, ^Нескучная математика. Калейдоскоп головоломок*, 1975 год

Пока Кантор писал эти статьи, на жизнь он зарабатывал уроками математики в женской гимназии и корпел над диссертацией на получение степени хабилитированного доктора. Она была необходима, чтобы преподавать в университете. Тема диссертации Кантора на латыни звучала как De transformatione jоплатит temariarum quadraticorum («О преобразовании тернарных квадратичных форм»).

Самым большим его желанием было получить место в университете Берлина или Геттингена, но пришлось довольствоваться положением в Галле. Он заступил на должность в 1869 году. Этот университет имел знаменательное прошлое, но в XIX веке слава его померкла. Кантор непрерывно пытался изыскать способ перевестись в Берлин или Геттинген, но все было напрасно, и ученый очень переживал по этому поводу.

В Галле под руководством Генриха Эдуарда Гейне (1821— 1881) Кантор окончательно сосредоточился на вычислении и с 1870 по 1872 год опубликовал пять статей (которые будут рассмотрены в следующей главе). В них он исследовал определенный тип бесконечных сумм. И хотя, как и бесконечные множества, они понимались потенциально, а не актуально бесконечными, именно вследствие этих первых работ в Галле Кантор задумался об актуальной бесконечности. Впервые она появилась в его научных трудах, хоть и неявно, в статье 1874 года.

Помимо публикации этой работы, разделившей его научную карьеру на «до» и «после», в 1874 году в жизни Кантора произошло еще одно важное событие — 9 августа он женился.

Валли Гутман, его невеста, тоже любила искусство, играла на фортепиано и брала уроки пения. Медовый месяц они провели в Интерлакене, туристическом городке Швейцарии. И чтобы лучше очертить характер ученого, отметим, что большую часть времени он беседовал о математике с Дедекиндом.

У Валли Гутман и Георга Кантора родились шестеро детей: четыре девочки и два мальчика. Веселый нрав Валли прекрасно дополнял серьезный и даже суровый характер Кантора и определял атмосферу их дома: как было принято в то время в кругах немецких университетских профессоров, семья вела очень активную общественную жизнь.

БЕСКОНЕЧНОСТЬ ПО КАНТОРУ

Теперь проанализируем статью liber eine Eigenschaft des Inbegriffes alter reellen algebraischen Zahlen («Об одном свойстве совокупности всех действительных алгебраических чисел»), опубликованную Кантором в 1874 году в «Журнале Крелле». В этой статье уже содержались основные идеи, которые позже позволили Кантору прийти к своей теории бесконечности, несмотря на то что Карл Вейерштрасс посоветовал ему скрыть их или хотя бы не подчеркивать их революционность. О чем же говорилось в статье? Что это были за идеи? Почему их следствия были столь провокационными? И что же это за «действительные алгебраические числа»?

Начнем анализ с одного из первых утверждений теории Кантора.

Оно гласит, что два множества предметов можно соотнести друг с другом, если член одного из них сопоставим с членом другого так, что ни в одном из этих множеств не останется члена без пары. Галилей проделал это с группами натуральных чисел и квадратных (см. рисунок).

Говоря математическим языком, эта операция является «установлением взаимно однозначного соответствия» между членами множеств.

Заметим, что если в обоих множествах больше не осталось членов, то сказать «два множества эквивалентны» — значит сказать, что в них одинаковое количество членов.

Теория Кантора основывается на том, что вопреки мнению Галилея этот принцип может быть перенесен на актуально бесконечные группы без какого-либо противоречия. То есть можно утверждать, что если два множества эквивалентны, в них одинаковое количество членов. Именно это и хотел доказать Кантор.

Вопросы бесконечности бросали вызов разуму и воображению человека, как никакая другая проблема за всю историю человеческой мысли.

Эдвард Каснер и Джеймс Ньюмен, «Математика и воображение», 1940 год

Однако говорить о «количестве членов» актуально бесконечного множества несколько странно, потому что, как сказал бы Аристотель, не существует числа, которое выражает это количество. (По крайней мере его не существовало в середине 1870-х годов. А позже, как мы увидим, оно появится. Отметим также, что знаменитый символ °°, введенный в 1655 году английским математиком Джоном Валлисом, обозначает потенциальную бесконечность, а не актуальную.) Так Кантор был вынужден ввести понятие «кардинальное число». Оно выражает идею количества членов законченной или актуально бесконечной группы, не говоря о количестве открыто. Вообще-то Кантор употребил термин «мощность», но после математики изменили его на «кардинальное число». Сегодня оба термина употребляются наравне.

Кардинальное число множества, по Кантору, — это характеристика, которая сохраняется после абстрагирования сущности его членов, а также их взаимоотношений.

Возьмем группу букв, составляющих слово «небо». Их кардинальное число, по определению Кантора, можно записать как ****. Эти символы обозначают членов группы, природа которой рассматривается как абстракция. Кардинальное число последовательности чисел 2,3, 5,7 тоже было бы ****.

1 2 3 4 5 6 7 8 9 10 ... 26
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈