Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Прочая научная литература » Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс

Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс

Читать онлайн Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс
1 ... 42 43 44 45 46 47 48 49 50 51
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Если взглянуть на ситуацию с другой стороны, то, по всей вероятности, мы открыли тот факт, что сила тяжести – не что иное, как сигнал об искривлении самого пространства-времени. Действительно ли это так и что вызывает подобное искривление? Учитывая, что действие гравитации проявляется только в непосредственной близости от материи, мы можем предположить, что пространство-время искривлено поблизости от материи и энергии, поскольку E = mc². Мы не упоминали о величине искривления пространства-времени и не будем останавливаться на этой концепции подробно, так как она, как принято говорить в физике, нетривиальна. В 1915 году Эйнштейн написал уравнение, которое позволяет определить, каким именно должно быть искривление пространства-времени при наличии материи и энергии. Это уравнение улучшает старый ньютоновский закон тяготения таким образом, чтобы он автоматически соответствовал специальной теории относительности (закон Ньютона не согласуется с ней). Безусловно, это обеспечивает результаты, очень похожие на действие закона Ньютона в большинстве ситуаций, с которыми мы сталкиваемся в повседневной жизни, но все же подчеркивает тот факт, что теория Ньютона – это только приближение. Для того чтобы проиллюстрировать различия в подходах к пониманию гравитации, давайте посмотрим, как Ньютон и Эйнштейн описали бы движение Земли вокруг Солнца. Ньютон сказал бы нечто в таком роде: «Земля притягивается к Солнцу силой тяжести, и это притяжение мешает ей улететь в космос, заставляя вместо этого двигаться по большому кругу»[61]. Эта ситуация аналогична вращению привязанного к веревке мяча над головой. Такой мяч будет перемещаться по кругу, поскольку натяжение веревки мешает ему двигаться иначе. Если перерезать веревку, мяч сразу же улетит по прямой. Точно так же если бы вам удалось отключить притяжение Солнца, то, как сказал бы Ньютон, Земля отправилась бы по прямой в открытый космос. Описание Эйнштейна было бы совсем другим и выглядело бы примерно так: «Солнце – массивный объект и, будучи таковым, искажает пространство-время вблизи себя. Земля свободно перемещается в космическом пространстве, но искривление пространства-времени заставляет ее двигаться по кругу».

Для того чтобы понять, как очевидная сила может быть не чем иным, как следствием геометрии, рассмотрим ситуацию: два друга идут по поверхности Земли. Им сказано отправляться с экватора и двигаться строго на север параллельно друг другу по идеальной прямой. Если ни один из друзей не мошенничал и не отклонялся от курса, они вполне могут прийти к выводу, что по мере их продвижения к Северному полюсу между ними действовала некая сила, которая притягивала их друг к другу. Это одно из объяснений происходящего, но есть и другое: поверхность Земли искривлена. То же самое происходит и с Землей, когда она движется вокруг Солнца.

Для того чтобы лучше понять, о чем идет речь, давайте вернемся к одному из наших отважных путешественников, идущих по поверхности Земли. Как и прежде, ему приказано идти только по прямой. В локальном масштабе он без всякого замешательства выполнит эту инструкцию, поскольку в любом месте на Земле может исходить из предположения, что работает эвклидова геометрия, а значит, концепция прямой линии ему вполне понятна. А теперь давайте вернемся к гравитации и пространству-времени. Концепция прямых линий, пролегающих в пространстве-времени, аналогична концепции прямых линий на поверхности Земли. Трудность возникает только в связи с тем, что пространство-время – это четырехмерная «поверхность», тогда как поверхность Земли двумерна. Однако эта трудность обусловлена нашим ограниченным воображением, а не повышенной сложностью математических выкладок. В действительности математическое описание геометрии в пространстве-времени не сложнее математического описания геометрии на поверхности сферы. Вооружившись концепцией прямых линий в пространстве-времени (известных как геодезические линии), мы можем взять на себя смелость выдвинуть предположение о том, как действует сила тяжести. Мы уже видели, что гравитацию можно исключить из рассмотрения в обмен на концепцию искривленного пространства, а также что в локальном масштабе пространство-время – это «плоское» пространство-время Минковского. На данном этапе изложения материала мы уже хорошо знаем, как двигаются объекты в такой среде. Например, если частица находится в состоянии покоя, она в нем и останется (если только какой-то внешний фактор не приведет ее в движение). Это означает, что данная частица перемещается в пространстве-времени лишь по оси времени. Аналогичным образом объекты, движущиеся с постоянной скоростью, будут перемещаться в одном и том же направлении с одной и той же скоростью (если что-то не собьет их с курса). Эти объекты будут следовать по прямым линиям диаграммы пространства-времени, наклоненным относительно временной оси. Таким образом, при отсутствии воздействия какой-либо внешней силы на каждом крохотном участке пространства-времени все должно перемещаться по прямым линиям. Сила тяжести начнет действовать, лишь когда мы соединим все маленькие участки воедино, поскольку только в этом случае отдельные прямые линии объединятся и образуют нечто более интересное, например орбиту движения планеты вокруг звезды. Мы еще не говорили о том, как именно необходимо соединить эти участки, чтобы создать искривление пространства-времени, но уравнение, написанное Эйнштейном в 1915 году, в точности определяет, как это следует делать. Однако суть происходящего крайне проста: мы исключили гравитацию из рассмотрения, заменив ее чистой геометрией.

Следовательно, сила тяжести – геометрическая концепция, а все объекты перемещаются в пространстве-времени по прямым линиям, если ничто не вынуждает их отклоняться от курса. Однако в любой заданной точке пространства-времени существует бесконечное количество геодезических линий, подобно тому как бесконечное количество прямых линий проходит через любую точку на поверхности Земли (или любой другой поверхности, если уж на то пошло). Так как же нам понять, по какой траектории в пространстве-времени будет перемещаться объект? Ответ достаточно прост: это зависит от обстоятельств. Например, человек, совершающий кругосветное путешествие, может отправиться в любом из возможных направлений. Он сам выбирает себе путь. Точно так же предмет, падающий вниз с любого места неподалеку от земной поверхности, будет перемещаться по одной геодезической линии в пространстве-времени, тогда как брошенный объект отправится по другой геодезической линии. Определив направление движения объекта в пространстве-времени в любой заданной точке, мы тем самым получаем полную траекторию его движения. Более того, все объекты, которые отправятся в данном направлении, обязательно будут двигаться по той же траектории, какими бы ни были их внутренние свойства (такие как масса или электрический заряд). Эти объекты просто следуют по прямой, и все. Таким образом, понимание гравитации в контексте искривления пространства-времени превосходно отражает принцип эквивалентности, так поразивший воображение Эйнштейна.

Размышления о природе пространства и времени привели нас к пониманию того, что Земля не просто падает по прямой линии вокруг Солнца. Эта прямая линия расположена в искривленном пространстве-времени, что проявляется в виде почти круговой орбиты движения в космическом пространстве. Но мы не пойдем дальше и не будем приводить доказательств того, что Земля падает по геодезической линии, тень которой в трехмерном пространстве оказывается почти круговой. Мы не делаем этого только потому, что это предполагает слишком сложные математические вычисления. Кроме того, это заставило бы нас высказать некоторые утверждения о том, как объекты искажают пространство-время, а мы всячески избегаем здесь этой темы. Математическая сложность – основная причина того, почему Эйнштейну понадобилось десять лет на разработку своей теории. Общая теория относительности достаточно проста с концептуальной точки зрения, но сложна в математическом плане, однако эта сложность ни в коем случае не омрачает ее красоту. Действительно, многие физики считают общую теорию относительности Эйнштейна самой красивой из всех теорий об устройстве Вселенной.

Вы наверняка обратили внимание, что в процессе обсуждения этой темы мы не выделяли один тип объектов на фоне других. В частности, сам свет также должен перемещаться в пространстве-времени по геодезическим линиями. На каждом участке пространства-времени, по которому проходит свет, он перемещается по одной из диагональных прямых, о которых шла речь в главе 4, но после соединения всех участков вместе мы обнаружим траекторию, которая отклоняется в пространстве. Это отклонение отображает деформацию пространства-времени под воздействием массы и энергии. Как и в случае перемещения Земли по орбите вокруг Солнца, траектория движения света сквозь пространство представляет собой тень его четырехмерной геодезической линии. Действенность принципа эквивалентности и предполагаемое отклонение траектории движения света можно наглядно проиллюстрировать с помощью еще одного мысленного эксперимента.

1 ... 42 43 44 45 46 47 48 49 50 51
Перейти на страницу:
Открыть боковую панель
Комментарии
Ксения
Ксения 25.01.2025 - 12:30
Неплохая подборка книг. Прочитаю все однозначно.
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее