Категории
Самые читаемые
ChitatKnigi.com » 🟠Проза » Историческая проза » Паскаль - Борис Тарасов

Паскаль - Борис Тарасов

Читать онлайн Паскаль - Борис Тарасов
1 ... 42 43 44 45 46 47 48 49 50 ... 79
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

В довольно похожей форме такая таблица еще раньше была известна в странах Азии. В Европе она встречается в XVI веке у немецкого математика Штифеля и у итальянского математика Тартальи (у последнего в виде четырехугольника, стороны которого образуют последовательности фигурных чисел). Но это никак не повлияло на самостоятельность Паскаля и на значительность его вклада в комбинаторику.

В своем трактате он излагает свойства и соотношения членов разностных рядов и биноминальных коэффициентов (они расположены по диагоналям таблицы), описывает двадцать основных следствий, вытекающих из непосредственного рассмотрения арифметического треугольника, а в небольших приложениях к трактату разбирает возможности использования этого треугольника для изучения числовых порядков и сочетаний, для определения раздела ставок между игроками и степеней биномов.

Антиалгебраизм Паскаля, неприязнь к отвлеченным формулам, сказавшиеся уже в его первых математических работах, обнаруживаются и в «Трактате...», где свойства чисел хотя и выводятся в общем виде, но описательно, с конкретными доказательными примерами, без алгебраических символов. Так, например, при определении коэффициентов степеней бинома Блез не искал априорных формул для их исчисления, а записывал их друг за дружкой, переходя от низших степеней к высшим, что не позволило ему, по словам одного французского исследователя научного творчества Паскаля, сделать открытие Ньютона: «Паскалю не хватило одного росчерка пера для написания формулы, дающей коэффициент n-го порядка, получаемого при возведении бинома в степень m: он не сделал его, позволив Ньютону прославить свое имя этим вычислением».

В числе приложений к «Трактату об арифметическом треугольнике» имеется небольшая работа под названием «О суммировании числовых степеней», написанная также в 1654 году и очень важная для дальнейшего течения мысли Блеза не только в математическом отношении. В ней Паскаль дает метод подсчета степеней чисел натурального ряда, а затем заключает: «Те, кто хотя бы в малой степени разбирается в учении о неделимых, не преминут усмотреть, что можно извлечь из предыдущих результатов для определения криволинейных площадей. Эти результаты позволяют немедленно квадрировать параболы всех видов и бесконечно много других кривых.

Если мы распространим на непрерывные величины те результаты, которые найдены для чисел по методу, изложенному выше, мы сможем высказать следующие правила.

Правила, относящиеся к прогрессии натуральных чисел, начинающейся с единицы

Сумма некоторого числа линий относится к квадрату наибольшей линии, как 1 к 2.

Сумма квадратов тех же линий относится к кубу наибольшей, как 1 к 3.

Сумма их кубов относится к четвертой степени наибольшей, как 1 к 4.

Общее правило, относящееся к прогрессии натуральных чисел, начинающейся с единицы

Сумма одинаковых степеней некоторого числа линий относится к непосредственно следующей степени наибольшей из них, как единица к показателю этой степени. Я не буду останавливаться на других случаях, так как здесь не место их изучать. Достаточно того, что мною популярна сформулированы указанные выше правила. Нетрудно найти и другие, опираясь на тот принцип, что непрерывная величина не увеличивается от прибавления к ней любого числа величин низшего порядка.

Так, точки ничего не добавляют линиям, линии — поверхностям, поверхности — телам. Или (чтобы перейти к числам, как и надлежит в арифметическом трактате) первые степени ничего не дают по сравнению с квадратами, квадраты — по сравнению с кубами и кубы — по сравнению с квадратами квадратов. Так что должно пренебрегать, как нулями, количествами низшего порядка.

Я хотел прибавить эти несколько замечаний, знакомых тем, кто пользуется неделимыми, чтобы выявить всегда вызывающую восхищение связь, которую проникнутая единством природа устанавливает между предметами, по внешности весьма далекими друг от друга. Такая связь явна в этом примере, в котором мы видим, что вычисление размеров непрерывных величин связано с суммированием степеней чисел».

Это заключение представляет собой одну из самых мастерских страниц математической литературы XVII века, по ясности и выразительности изложения его можно сравнить с физическими трактатами Паскаля. Блез практически использует слово «сумма» в том значении, в каком в современной математике употребляется понятие интеграла; кроме того, сформулированное Блезом правило об отбрасывании любого числа величин низшего порядка по сравнению с величинами более высокого порядка чрезвычайно плодотворно при анализе бесконечно малых, что позволяет считать Паскаля одним из предшественников теории пределов и анализа бесконечно малых, лежащих в основе дифференциального и интегрального исчисления. Наконец, чисто математическое различение рядов непрерывных величин, будучи перенесенным в область философии, оказывается существенно важным для понимания описываемой в «Мыслях» иерархии порядков, образующих структуру бытия: порядка материи, порядка духа, порядка любви и милосердия...

1654 год чрезвычайно плодотворен для тридцатилетнего Паскаля в научном отношении. В «Послании Парижской академии» он приводит обширный аналитический перечень своих напечатанных и неопубликованных математических сочинений: «Эти работы, весьма знаменитые ученые, я преподношу вам или вам их возвращаю; в самом деле, я считаю как бы вашими те из них, которые не были бы моими, если бы я не сформировался среди вас». Паскаль, едва сам подозревая о том, «возвращал» свои труды не только в почтенно-метафорическом смысле. 1654 год стал для него и годом решающих перемен, отхода от научных проблем сформировавшей его среды (он отказывается от намерения редактировать перечисленные в «Послании...» работы и публиковать уже готовые к печати), критического переосмысления собственного образа жизни и образа жизни его светского окружения.

Результаты этого переосмысления четко видны в «Мыслях».

11

В «Мыслях» имеется ряд размышлений о нищете человека, в которых есть внутренняя система тесно связанных друг с другом звеньев. Эти звенья образуют неразмыкаемый круг иллюзорного существования светской жизни, сокрывающей истинное бытие: поверхность — видимость — счастье — развлечение — самолюбие. Если человек самолюбив, то в его жизни, несомненно, присутствуют и все остальные атрибуты этой системы. Если он стремится к счастью, то неизбежно самолюбив, ориентируется на видимость, поверхность и т. д. И с какого бы звена ни начать, тотчас же выстраивается вся остальная цепочка. Однако счастье в этой цепочке играет ведущую роль.

Жажда счастья — это изначально присущий несовершенной человеческой воле импульс. «Все люди, без исключения, ищут счастья; какие бы различные способы они ни употребляли, все стремятся к этой цели. А что один идет на войну, другой не идет, — это зависит от одного и того же стремления, которое присуще им обоим, но сопровождается различными взглядами на счастье. Воля никогда не делает ни малейшего шага иначе, как по направлению к этому предмету».

А что такое само счастье? С-часть-е — это привязанность к части, доставляющей наибольшее удовольствие и заполняющей все способности человека (французский язык выражает временной оттенок части — счастье буквально означает хороший час), это стремление к покою в обладании определенной частью. Даже для философов, отвергавших внешнее благосостояние, замечает Паскаль, существовало 288 различных мнений о высшем благе. Путь к обладанию той или иной частью проходил в наблюдаемом Блезом светском обществе через ориентацию на видимость и кажимость, через стремление заполнить и украсить поверхность человеческого существования, пригнать ее к различным, сферам общения и выставить напоказ:

«Мы желаем жить воображаемой жизнью в мысли других и из-за этого силимся выставлять себя напоказ. Мы непрерывно стараемся украсить и сохранить это воображаемое существо и пренебрегаем подлинным существом...»

«Жизнь человеческая есть не что иное, как постоянная иллюзия; люди только и делают, что обманывают друг друга и льстят друг другу...»

«Люди склонны маскировать и переряжать природу. Нет больше короля, папы, епископов: вместо них является «августейший монарх» и т. д.; нет Парижа, а есть «столица королевства»...»

«Мы не что иное, как ложь, двоедушие, противоречие, мы прячемся от самих себя, переряжаемся сами для себя...»

Паскаль обнаруживает главенство поверхности, внешности, видимости в поступках людей. Глубокой и содержательной жизни человек предпочитает репутацию, мираж, не имеющий никакой реальности. И «порядочный человек» умело пользуется этим свойством человеческого поведения, искусно играя полыми шарами мнений и приятных ощущений. Подмеченные особенности салонно-светской жизни Паскаль проецирует на более широкий круг социальных явлений своего времени. Основываясь на наблюдениях за служебным окружением отца и лечившими Блеза врачами, Паскаль отмечает, что французские судьи хорошо поняли тайну величественной обстановки — красных мантий и горностаевых мехов, в которые они закутываются, как пушистые коты, внушительных палат, где они судят; врачам же совершенно необходимы сутаны, а докторам наук — четырехугольные шапочки и просторные мантии, без чего «они никогда не обманули бы публики, которая не может устоять против этого столь подлинного доказательства... Одни только военные люди не переряжены подобным образом, потому что их действительное назначение основано на силе, а не на притворстве».

1 ... 42 43 44 45 46 47 48 49 50 ... 79
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?