Наука, философия и религия в раннем пифагореизме - Леонид Яковлевич Жмудь
Шрифт:
Интервал:
Закладка:
Вот, собственно говоря, и все, что говорит античная традиция о математических открытиях Пифагора, остальные свидетельства мы уже приводили выше. Нетрудно заметить, что за пределы области, очерченной авторами IV в., выходит лишь сообщение Ямвлиха о дружественных числах. Никто из античных писателей не соединяет с Пифагором никаких грандиозных достижений и не приписывает ему ничего такого, что в принципе не могло бы ему принадлежать. Обнаруживаемое единодушие, пожалуй, достойно удивления, и его едва ли нарушают слова Прокла о теории иррациональности и пяти правильных многогранниках, особенно если учитывать, что он жил через тысячу лет после Пифагора.
Несколько забегая вперед, отметим, что такую же картину мы наблюдаем и в гармонике, и в астрономии. С последней, правда, дело обстоит несколько сложнее, однако и здесь можно показать, что разногласия источников проистекают из-за естественных искажений, с которыми мы сталкиваемся в тысячах других случаев, а не в силу особого характера пифагорейской школы.
* * *
Вернемся теперь к тому, о чем уже упоминалось выше: к тесной взаимосвязи всех математических открытий Пифагора. Конечно, сама по себе она не является прочным основанием для реконструкции: хорошо известно, что решения двух логически связанных проблем могут отстоять друг от друга на многие десятилетия. И все же эта взаимосвязь еще раз подтверждает достоверность собранных выше свидетельств.
Одним из важных звеньев между арифметикой, геометрией и гармоникой была теория пропорций.[577] Пифагору, безусловно, были известны три средние пропорциональные: арифметическое c=(a+b)/2, геометрическое c=√ab и гармоническое c=2ab/(a+b) также «музыкальная» пропорция a : (a+b)/2 = 2ab/(a+b) : b, прямо связанная с его акустическими исследованиями.[578] По сообщению Гауденция (Intr. harm. 11), восходящему к более ранним источникам,83 Пифагор открыл численное выражение гармонических интервалов путем деления струны монохорда в отношении 12:6, 12:8, 12:9. Данные отношения присутствуют и в «музыкальной» пропорции, где средние члены являются арифметическим и гармоническим средним между крайними (6:9 = 8:12). Эту же пропорцию использовал и Гиппас в своем опыте с медными дисками (Aristox. fr. 90).[579]
Интересное подтверждение принадлежности Пифагору теории пропорций нашел Г. Френкель.[580] Он показал, что некоторые идеи Гераклита выражены в форме геометрической пропорции, например: бог/человек = человек/ребенок (22 В 79), бог/человек = человек/обезьяна (22 В 82-83). Френкель резонно предположил, что Гераклит не сам нашел геометрическую пропорцию, а воспринял ее у ранних пифагорейцев.
Арифметическую теорию пропорций, приложимую к соизмеримым величинам, Пифагор, скорее всего, использовал и при доказательстве своей знаменитой теоремы.[581] Ход ее, согласно реконструкции Хита, таков. Исходя из того, что в подобных треугольниках ABC, ABD и A CD стороны пропорциональны, мы получаем следующие равенства:
Складывая их, мы получаем: АВ2+АС2 = BC(BD + DC), или АВ2+ AC2 = DC2.
Следующий раздел пифагоровой арифметики — это учение о четном и нечетном, ставшее первым образцом теории чисел. Как считал Беккер, а вслед за ним большинство историков греческой математики,87 оно сохранилось у Евклида почти в неизменном виде (IX,21-34). Приведем для примера первые пять положений этого учения (в сокращенной форме):
21. Сумма четных чисел будет четной;
22. Сумма четного количества нечетных чисел будет четной;
23. Сумма нечетного количества нечетных чисел будет нечетной;
24. Четное число минус четное число есть четное;
25. Четное число минус нечетное число есть нечетное. Доказательства этих предложений опираются на определения
VII книги и строго логически следуют друг за другом. Хотя Евклид иногда представлял числа в виде отрезков (впрочем, это было скорее исключением, чем правилом), а пифагорейцы пользовались счетными камешками (ψήφοι), суть дела от этого не меняется. Беккер, а еще более подробно Кнорр демонстрируют, что сохраненные Евклидом доказательства (а не только сами предложения) легко иллюстрируются при помощи псефов.[582]
Абсолютно неправдоподобно, чтобы Пифагор выдвигал данные предложения без доказательств, которые были добавлены кем-то позднее: сами предложения в большинстве своем очевидны любому, кто знаком с элементарными вычислениями. Аристоксен или Аристотель, говоря о пифагоровой арифметике, едва ли ставили бы ему в заслугу «открытие» или «иллюстрацию» того факта, что сумма четных чисел всегда будет четной, если бы это и сходные с ним предложения не были доказаны. Точно так же, как Фалес в геометрии, Пифагор начал в арифметике с доказательства простейших фактов, которые раньше не считали нужным доказывать. Насколько быстро он продвинулся в разработке дедуктивного метода, показывает следующий факт: четыре предложения этого учения (IX,30-31, 33-34) доказываются от противного. Первым на это обратил внимание Сабо, но он отказался признать, что эти доказательства столь же древние, как и предложения.[583] Единственный, в сущности, аргумент, который он приводит, — отсутствие исторических свидетельств — критики не выдерживает. Источников по раннегреческой математике так мало, что ожидать свидетельств для каждого доказательства было бы совершенно утопичным.
Обратившись к математической стороне проблемы, следует признать справедливость выводов Беккера, полагавшего, что все учение о четном и нечетном следует рассматривать еп bloc. (Отмеченные им незначительные изменения не касались предложений 30-31, 33-34.) Предложения, доказываемые от противного, совершенно естественно следуют из доказываемых прямым образом, не отличаясь от них по сложности. Так, например, для доказательства предложений 33-34 не требуется ничего, кроме определений 8-9 седьмой книги. Было бы крайне странно полагать, что первоначальное прямое доказательство было впоследствии заменено косвенным: греческая математика систематически избегала подобных операций. Словом, все говорит за то, что это учение дошло до нас в первоначальном виде.
Отсюда следуют два важных вывода: 1) наглядность математических фактов и их дедуктивное доказательство вовсе не находятся в непримиримом противоречии, как это стремился представить Сабо; 2) доказательство от противного родилось внутри математики, причем на самом раннем ее этапе,[584] и лишь затем элеаты попытались применить его в философии.
Другой пример очень раннего применения косвенного доказательства — теорема о равенстве сторон треугольника, стягивающих равные углы (Eucl. 1,6), обратная доказанной Фалесом теореме о равенстве углов в равнобедренном треугольнике. Она относится к реконструированному ван дер Варденом раннепифагорейскому математическому компендию и была, вероятно, доказана либо в поколении Пифагора, либо в следующем за ним.[585]
Вторым связующим звеном между геометрией и арифметикой была теория фигурных чисел (треугольных, квадратных, прямоугольных и т.д.). Хотя до нас не дошло прямых свидетельств, относящих ее к Пифагору, в пользу его авторства говорит целый ряд аргументов.
Построение фигурных чисел с помощью гномона (угольника) представляет собой суммирование простых арифметических рядов, например, четных или нечетных