Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Прочая научная литература » Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией - Джереми Тейлор

Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией - Джереми Тейлор

Читать онлайн Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией - Джереми Тейлор
1 ... 41 42 43 44 45 46 47 48 49 ... 83
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Похоже, что значительная часть офтальмологического научного сообщества не разделяет энтузиазма креационистов по поводу волоконной оптики Франца. Работа Франца была подвергнута фундаментальной и сокрушительной критике, которой по каким-то причинам не было уделено должного внимания. Дэвид Уильямс, директор Центра офтальмологии Рочестерского университета и ведущий мировой эксперт по человеческому зрению, говорит, что существуют неоспоримые доказательства того, что клетки Мюллера не являются волноводами ни в каком сколько-нибудь значимом смысле этого слова. Внимательное изучение анатомии сетчатки показывает, что эти клетки вовсе не расположены вдоль линий светового потока, идущего из зрачка к фоторецепторам. В центральной ямке макулы – небольшом участке сетчатки, отвечающем за зрение высокой остроты, – клетки Мюллера расположены под углом, а на периферии сетчатки и вовсе имеют радиальную ориентацию, т. е. направлены к центру глаза, а не к зрачку. В периферической части сетчатки функцию световодов выполняют колбочки, которые как раз и расположены в направлении падающего света. Как указывает Уильямс, мы можем видеть палочки и колбочки при помощи адаптивной оптики именно благодаря тому, что они являются световодами. Они проводят световые волны от своей задней части, куда те попадают от источника света через зрачок, к своему светочувствительному элементу, и поэтому имеют вид ярких светящихся пятен. Клетки Мюллера никогда не светятся подобным образом.

В апреле 2011 года журнал Nature опубликовал статью, содержащую ссылку на замечательный фильм, показывающий постепенное формирование глазоподобной структуры из стволовых клеток. В фильме показан не процесс формирования глаз у живого эмбриона, а то, как глаз – в буквальном смысле слова на наших глазах – вырастает вне живого организма, в пробирке. Значение этого захватывающего эксперимента трудно переоценить, поскольку он приоткрыл завесу тайны над тем, как происходит развитие глаза, и показал, что строительные инструкции содержатся внутри самих дифференцирующихся клеток: другими словами, глаз является самоорганизующейся структурой – он способен построить сам себя самостоятельно, без какого-либо вмешательства извне. Этот эксперимент воодушевил мировое сообщество исследователей-офтальмологов, которые пытаются использовать принципы биологии развития для регенерации больных глаз, поскольку показал, что они идут по правильному пути.

Мотоцугу Эираку, ныне покойный Ёсики Сасаи и их коллеги из научно-исследовательского института RIKEN в Японии поместили эмбриональные стволовые клетки мышей в пробирку с питательной средой и некоторым количеством гелеобразного субстрата под названием матригель, способного играть роль каркаса для растущей ткани. Также они ввели несколько доз белка Nodal, который, как известно, запускает дифференциацию стволовых клеток. Через шесть дней после начала эксперимента сформировалось несколько полых сфер, быстро превратившихся в полусферические мешочки или пузырьки. Чтобы наблюдать за происходящим, ученые предварительно ввели в стволовые клетки ген зеленого флуоресцентного белка (ЗФБ). Изначально ген ЗФБ был выделен у медуз и в настоящее время широко используется в качестве маркера для визуализации развития тканей. Когда стволовые клетки в пробирке начали дифференцироваться, они включили ген ЗФБ, благодаря чему развивающаяся структура светилась призрачным зеленым светом. Другими словами, исследователи создали свою собственную натуральную видеографику! Без ЗФБ пузырьки развивались бы незаметно, пока вокруг них не образовалось бы тканевая оболочка.

Между восьмым и десятым днем пузырьки резко изменили форму – они сложились внутрь, сформировав чаши точно такого же размера, как глазной бокал у зародышей мышей. Клетки наружной стенки глазного бокала начали продуцировать белковые маркеры, которые обычно можно увидеть в развивающемся пигментном эпителии сетчатки, а клетки внутреннего слоя начали экспрессировать маркеры, характерные для нейронов сетчатки. Раньше считалось, что для того, чтобы запустить процесс формирования глазного бокала, сначала из ткани эктодермы должен образоваться хрусталик, однако в эксперименте Эираку и Сасаи глазной бокал сформировался совершенно самостоятельно, без какого-либо влияния извне. Следующим шагом исследователи осторожно вырезали несколько таких пузырьков и вырастили их отдельно от первоначального агрегата стволовых клеток. Удивительно, но через четырнадцать дней эта «эмбриональная сетчатка» принялась дифференцировать все известные типы клеток: фоторецепторы, ганглиозные клетки, биполярные клетки, горизонтальные клетки, амакринные клетки и глиальные клетки Мюллера. Кроме того, эти различные типы клеток размещались в правильном анатомическом порядке, как это происходит в развивающемся глазе нормального зародыша: биполярные клетки располагались поверх фоторецепторных, а над ними, во внутреннем слое, – ганглиозные и амакринные клетки. Таким образом, исследователям удалось вырастить глазной бокал и сетчатку, или, точнее говоря, эти структуры вырастили сами себя – это был глаз «сделай себя сам». «Программа этого сложного морфогенеза, – заключают Эираку и Сасаи, – имманентно заложена в клетках и запускает процесс динамического самоформирования и самоинформирования под влиянием последовательной комбинации локальных правил и внутренних сил в эпителии». Таким образом, японские ученые заглянули в ближайшее будущее офтальмологии, когда регенеративная технология «сделай себя сам» позволит выращивать настоящие многослойные трехмерные нейронные сетчатки на заказ, в виде целых листов.

Разумеется, как справедливо может заметить скептически настроенный читатель, японские ученые вырастили не полноценный глаз, а всего лишь глазной бокал и сетчатку. А как насчет, скажем, хрусталика? К счастью, Андреа Стрейт из Королевского колледжа в Лондоне показала, каким образом развивающийся глазной бокал индуцирует образование хрусталика в нужном месте. Наружный слой клеток любого эмбриона – эктодерма – обладает имманентной способностью формировать хрусталик в любой части своей поверхности. Например, в ходе экспериментов исследователям удалось стимулировать образование хрусталиков по всей поверхности тела зародышей лягушки и насекомых. Стрейт показала, что в норме мигрирующая популяция клеток нервного гребня, которая находится между развивающейся центральной нервной системой и эктодермой, не дает эктодерме формировать хрусталики. Эти клетки активируют клеточные сигнальные пути, которые подавляют экспрессию ключевого гена Pax6, отвечающего за развитие глаз. Однако, когда глазной бокал формируется и поднимается вверх, прикасаясь к эктодерме, он образует санитарный кордон, изолирующий локальный участок эктодермы от клеток нервного гребня. Ген Рах6 перестает ингибироваться, и на этом месте – именно там, где нужно, – формируется хрусталик.

Робин Али из Института офтальмологии в Лондоне воодушевлен экспериментом своих японских коллег. Он начал заниматься проблемами регенерации глаза из стволовых клеток в 2003 году и за последние десять лет вплотную подошел к испытаниям регенеративных технологий на людях. Десять лет назад вокруг стволовых клеток было много ажиотажа, но очень мало качественных данных. Потребовались годы кропотливых исследований на животных моделях, чтобы узнать, что можно делать со стволовыми клетками, а что нет. Робин Али использует в своей работе мышей, поскольку их сетчатка продолжает формироваться и после рождения. «Я хотел узнать, – поясняет Робин Али, – можно ли в принципе пересадить фоторецепторные клетки, т. е. возможно ли это технически? Приживутся ли они на чужой сетчатке?» Для начала он взял фоторецепторные клетки у трехдневной мыши и трансплантировал их в сетчатку другой мыши того же возраста. И действительно, эти фоторецепторы отлично прижились. «Благодаря этому мы узнали, – говорит исследователь, – как должны выглядеть трансплантированные фоторецепторы и как они должны правильно интегрироваться, чтобы не создавать никакой путаницы и беспорядка».

Затем команда Али сравнила успешность трансплантации стволовых клеток сетчатки возрастом от трех дней до трех недель, чтобы найти оптимальный момент для пересадки. «Мы посмотрели на эффективность интеграции этих клеток. Она соответствовала гауссовой кривой. Если мы брали совершенно незрелые стволовые клетки сетчатки, они не интегрировались, а просто превращались в крошечные сетчатки в том месте под сетчаткой, куда мы их вводили. Они формировали хорошую сетчатку, но проблема была в том, что они знать не желали своих соседей. Если же мы пересаживали полностью зрелые фоторецепторные клетки, те вообще ничего не делали. Таким образом, на вершине гауссова колокола мы нашли окно, когда фактически происходит рождение фоторецепторных клеток, пик которого приходится на возраст около пяти дней после рождения мыши. Это оптимальный возраст для донорской клетки. «Наиболее успешные результаты дает трансплантация фоторецепторных клеток, которые уже не являются стволовыми клетками и находятся на стадии клеток-предшественников, которые перестали делиться, но еще не начали дифференцироваться».

1 ... 41 42 43 44 45 46 47 48 49 ... 83
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?