Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Химия » Превращение элементов - Борис Казаков

Превращение элементов - Борис Казаков

Читать онлайн Превращение элементов - Борис Казаков
1 ... 37 38 39 40 41 42 43 44 45 46
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Но почти два года он оставался без имени; более того, в соответствующую клетку менделеевской таблицы его заносить не торопились. Флеров воздерживался от этого, ожидая, что скажут химики. Ведь 104-й, как предполагалось, должен сильно отличаться от других заурановых элементов; очевидно, он — экагафний, но это надо было доказать.

За изучение химических свойств 104-го взялся чехословацкий учёный Иво Звара, окончивший Московский государственный университет. Можно представить себе, к решению какой задачи он приступил. За пять часов работы ускорителя в лучшем случае удавалось наблюдать образование лишь одного атома 104-го элемента. И жизни ему было отпущено совсем ничтожный срок. Правда, не 0,014 секунды, но и не намного больше — 0,3 секунды. То, что Иво Звара справился с почти неразрешимой задачей, заставляет восхищаться мужеством, самоотверженностью, беспредельной преданностью учёных науке и уровнем технического обеспечения современного научного эксперимента.

Иво Звара создал своеобразную методику «мгновенной химии», которую отрабатывал в течение четырёх лет. Если 104-й — не актиноид и принадлежит к соседней группе, то у него должны быть существенные отличия в соединении с хлором. Хлориды всех актиноидов нелетучи, и их легко отделить на фильтре от хлоридов IV группы, которые летучи. В приборе Иво Звары атомы 104-го выбивались из мишени и попадали в трубки, по которым шёл газовый поток, где он и тормозился. Газ прежде всего был чистым азотом, но в него добавлялись летучие хлориды элементов аналогов — старый принцип, разработанный ещё Жолио-Кюри, но не в жидкой фазе, а в газовой. Редкие атомы 104-го, попадая в поток, немедленно образовывали хлорид и в виде такого соединения устремлялись к счётчику самопроизвольного деления ядер. Чтобы повысить летучесть хлоридов 104-го, которая всё же ниже, чем у его аналогов, опыты велись при температурах порядка 300-350°, что требовало большой надёжности и коррозионной стойкости аппаратуры. Побочно образовавшиеся хлориды актиноидов легко задерживались специальными фильтрами, а 104-й достигал «места своего назначения» за время менее 0,1 секунды и сигнализировал там о своём присутствии, не допуская сомнений в том, что он не что иное, как экагафний, со всеми химическими свойствами, присущими IV группе.

Эпопея 104-го элемента была завершена, и Г.Н.Флеров мог без всяких колебаний дать ему название. Он написал: курчатовий.

Нужны ли они?

Убеждённый «в том, что исследование урана, начиная с его природных источников, поведёт ещё ко многим новым открытиям, — писал в своё время Д.И.Менделеев, — я смело рекомендую тем, кто ищет предметов для новых исследований, особенно тщательно заниматься урановыми соединениями».

Этот завет стал соблюдаться ещё при жизни великого учёного и в последующее время привёл к таким результатам, которые и фантастическими романами не были предусмотрены.

Создание целого ряда заурановых элементов можно, пожалуй, назвать научной героикой.

Теоретическая физика тоже пришла к великим результатам.

И тут не постесняемся задать один, как говорят учёные, некорректный вопрос: ну и что? зачем всё это нужно? Какая нам польза от элементов-призраков, жизнь которых определяют даже не в прямую, на ощупь, а по каким-то следам? А ведь всё это денег стоит — и, по всему, немалых!

Практическое использование одного из первых заурановых элементов — плутония не вызывает сомнения. Оно тридцать лет назад было потрясающе трагичным. При создании этого элемента, как, впрочем, и других заурановых, учёные интересовались не столько физическими и химическими свойствами его, сколько энергией, выделяющейся при распаде. Да и сам уран рассматривался прежде всего с этой точки зрения. «Манхеттенский проект» завершился военным использованием атомной энергии, и мир содрогнулся от трагедии Хиросимы и Нагасаки.

В СССР при разработке методов овладения атомной энергией сразу же было обращено внимание на возможности её мирного использования. Это выразилось в постройке первых атомных электростанций, о которых Д.И. Блохинцев шутливо сказал, что схема их немногим сложнее самовара, с той лишь разницей, что вместо угля горит уран.

Дальновидность советских учёных, заставивших атом работать на благо людей, приобрела особую ценность сейчас, когда мир стал перед проблемой истощения известных природных энергоресурсов. «Помнится, — пишет академик А.Александров, — что ещё 20 лет назад, когда только начала работать первая в мире советская атомная станция мощностью всего 5 тысяч киловатт, многие считали, что атомная энергия — это, в общем, скорее забава учёных и инженеров и вряд ли найдёт когда-либо широкое применение, вряд ли будет конкурентоспособной с энергетикой на обычном топливе — нефти, газе и угле. Теперь так не думают. Сегодня в 16 странах мира действуют более ста атомных электростанций общей мощностью примерно 40 миллионов киловатт». А к концу века, считает академик А.Александров, до 60 процентов мирового энергопотребления обеспечит атомная, а впоследствии термоядерная энергетика.

В «Основных направлениях развития народного хозяйства СССР на 1976–1980 годы», принятых XXV съездом КПСС, намечается ввести в действие мощности на электростанциях в размере 67–70 миллионов киловатт, в том числе на атомных — 13–15 миллионов киловатт. Причём, как сказано в этом документе, необходимо «предусмотреть опережающее развитие атомной энергетики в европейской части СССР». Почему — в европейской? Да потому, что здесь сосредоточено около 75 процентов потребителей электроэнергии, в то время как подсчитанных запасов минерального топлива по стране на её европейскую часть приходится около 20 процентов. Кроме того, ставится задача постепенного сокращения потребления в качестве топлива такого ценного сырья для химической промышленности, как нефть и газ.

Плутоний постоянно вырабатывается в атомных реакторах. Это металл, физические и химические свойства которого установлены с предельной чёткостью. Выяснены точки его плавления и кипения, изменение плотности в зависимости от температуры, образование шести кристаллических форм и другие свойства, «подведомственные» физике, химии, кристаллографии, металлографии и другим точным наукам. Область технического использования очень широка, не говоря уже о том, что он — «сырьевой материал» для получения других заурановых элементов.

Плутоний, ужаснувший мир в 1945 г., в настоящее время рассматривается как средство в борьбе за продление человеческой жизни. Сердце изнашивается, деятельность его ослабевает, и ведёт это к неотвратимому концу. Вживлённый в организм больного миниатюрный стимулятор из изотопа плутония-239 сопоставим с аккумулятором, дающим добавочную энергию сердцу, но не требующим никакой перезарядки. Чтобы активность его снизилась наполовину, требуется 90 лет. На человеческую жизнь, даже с больным сердцем, этого более чем достаточно.

Поскольку плутоний в реакторах сейчас получают в больших количествах, то плутониевый аккумулятор используется в чисто технических целях: мощность его во много раз превосходит мощность аккумуляторов химических как щелочного типа, так и свинцового; конечно, такой аккумулятор значительно дороже, но помимо мощности он располагает и ещё одним незаменимым преимуществом — миниатюрностью.

Техническая служба последующих элементов более ограничена, но и она немалая; это пока, а в дальнейшем, следует полагать, она будет расширяться. Америций, доставивший столько треволнений открывателям 104-го, помог установить новое явление в физике, которое трудно переоценить. Гамма-излучение одного из его изотопов используется для многих измерительных целей. Тончайшая фольга или уровень жидкости с его помощью измеряются с поразительной точностью.

Давно уже использовался искусственно радиоактивный изотоп йода для изучения состояния щитовидной железы. Теперь вовсе не обязательно вводить «меченые атомы» йода в организм. Гамма-лучи крошечного препарата америция выявят всё по накоплению в железе обычного стабильного изотопа йода. Радиографические приборы для исследования нефтяных скважин также пользуются услугами америция-241.

Кюрий-244 — один из наиболее доступных в весовых количествах заурановых элементов. Он образуется в недрах работающего реактора. Как источник энергии он, естественно, дорог, поэтому и используется в особо ответственных приборах — автоматических метеостанциях, искусственных спутниках и аппаратуре для исследования глубин океана. С увеличением мощности атомных реакторов стоимость кюрия значительно снизится. А как источник альфа-излучения он и сейчас значительно дешевле, чем радий и полоний, требующие огромных затрат и усилий для извлечения их из рудных месторождений.

Изотопы берклия используются пока лишь в исследовательских работах. Самый долгоживущий из них, берклий-249, имеет период полураспада 290 дней, и следует оценить его как перспективный для практического использования. Его собрат калифорний также накапливается в весовых количествах в процессе работы ядерного реактора. Некоторые изотопы его выгодно отличаются от других заурановых элементов большим числом испускаемых нейтронов при каждом акте деления (в среднем 3,5).

1 ... 37 38 39 40 41 42 43 44 45 46
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈