Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Прочая научная литература » Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс

Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс

Читать онлайн Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс
1 ... 39 40 41 42 43 44 45 46 47 ... 51
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Тем не менее, имея в своем распоряжении стандартную модель и трезвый ум, физики-теоретики рассчитали прогнозы этой модели, и полученные ими результаты полностью совпали с экспериментальными данными. До настоящего времени теория и эксперимент согласуются с точностью до десяти миллиардных долей. Это одно из самых точных испытаний любой теории, которая когда-либо создавалась во всех областях науки. К настоящему моменту, в немалой степени благодаря БЭПК и экспериментам с магнетизмом электронов, мы обрели большую уверенность в том, что стандартная модель физики элементарных частиц находится на правильном пути. Наша теория пребывает в прекрасном состоянии – за исключением одной последней детали, которая на самом деле достаточно серьезна. Что представляют собой две последние строки основного уравнения?

Мы признаем свою вину: мы скрывали информацию, имеющую бесспорно важное значение для тех поисков, которые мы предпринимаем в этой книге. Теперь пришло время раскрыть секрет. Требование наличия калибровочной симметрии, казалось бы, подразумевает, что все частицы стандартной модели не должны иметь массы. Это большое заблуждение. Любые объекты имеют массу, и чтобы это доказать, не нужны сложные научные эксперименты. Мы размышляли об этом на протяжении всей книги и вывели в итоге самое знаменитое уравнение в физике – E = mc², в котором явно присутствует символ m. Эту проблему решают две последние строки основного уравнения. Когда мы поймем их суть, наше путешествие завершится, поскольку мы получим объяснение самого происхождения массы.

Проблему массы сформулировать очень легко. Если мы попытаемся включить ее непосредственно в основное уравнение, то неизбежно нарушим калибровочную симметрию, а она лежит в основе этой теории. Использование данной концепции позволило нам как по волшебству объяснить существование всех сил природы. Более того, в 1970-х годах физики-теоретики доказали, что отказ от калибровочной симметрии – не выход, поскольку в таком случае теория развалится на части и потеряет смысл. Выход из этой на первый взгляд тупиковой ситуации в 1964 году нашли три группы ученых, работавшие независимо друг от друга. Ученые Франсуа Энглер[55] и Роберт Браут[56] из Бельгии, Джеральд Гуральник[57], Карл Хаген[58] и Том Киббл[59] из Лондона, а также Питер Хиггс[60] из Эдинбурга написали выдающиеся работы, которые привели к открытию того, что впоследствии получило известность как механизм Хиггса.

Как же объяснить, что такое масса? Предположим, вы начали с теории об устройстве Вселенной, в которой массы просто нет, и вы даже не изобрели бы термина для ее обозначения. Как мы уже знаем, в таком случае все частицы просто перемещались бы со скоростью света. А теперь представьте, что в рамках этой теории происходит нечто – скажем, некое событие, после которого различные частицы начинают двигаться с другой, более низкой скоростью и, разумеется, больше не перемещаются со скоростью света. В таком случае вы имели бы полное право заявить, что произошедшее отвечает за происхождение массы. Это «нечто» – механизм Хиггса, и нам пора объяснить, что это такое.

Представьте, что у вас завязаны глаза и вы держите на нитке шарик для пинг-понга. Дернув за нитку, вы придете к выводу, что на ее конце находится нечто имеющее совсем небольшую массу. Предположим, что шарик для пинг-понга не болтается свободно на нитке, а погружен в густой кленовый сироп. Дернув за нитку в этот раз, вы почувствуете значительное сопротивление и решите, что на конце нитки находится нечто гораздо тяжелее шарика для пинг-понга. А теперь представьте, что некий космический кленовый сироп пронизывает все пространство, причем он настолько вездесущ, своего рода фон для всего происходящего, что мы даже не замечаем его присутствия.

Безусловно, на этом аналогия с сиропом исчерпывается. Во-первых, это должен быть избирательный сироп, который удерживает кварки и лептоны, но беспрепятственно пропускает фотоны. Вы можете подумать, что можно было бы развить эту аналогию дальше, чтобы объяснить и этот феномен, но мы считаем, что донесли до вас основную мысль. Кроме того, мы не должны забывать, что это всего лишь аналогия. Разумеется, в работах Хиггса и его коллег никакой сироп не упоминается.

В действительности в этих работах идет речь о том, что мы называем сейчас полем Хиггса. Подобно полю электрона, с полем Хиггса связана частица – частица Хиггса. Так же как и в случае поля электрона, значения поля Хиггса изменчивы. Там, где это поле самое сильное, вероятность обнаружить частицу Хиггса наиболее высокая. Однако есть одно существенное отличие: поле Хиггса не является нулевым даже при отсутствии частиц Хиггса – именно в этом смысле оно напоминает вездесущий сироп. Все частицы в стандартной модели двигаются на фоне поля Хиггса, и некоторые из них попадают под его воздействие в большей степени, чем другие. Последние две строки основного уравнения охватывают именно этот физический процесс. Поле Хиггса представлено в уравнении символом ϕ, и фрагмент третьей строки, содержащий два символа ϕ вместе с B или W (которые в нашей сокращенной записи скрыты в символе D в третьей строке основного уравнения), – именно те члены уравнения, которые генерируют массу для частиц W и Z. Эта теория весьма разумно устроена так, что фотон остается без массы (часть фотона, обозначенная символом B, и часть, обозначенная W, сокращаются; они также скрыты в символе D), а поскольку поле глюона (G) нигде не встречается, у него тоже нет массы. Включение в уравнение поля Хиггса позволило придать частицам массу, не нарушив при этом калибровочную симметрию. Вместо этого масса частиц возникает в результате их взаимодействия с фоновым полем Хиггса. В этом и состоит красота идеи: мы можем получить массу, не теряя калибровочную симметрию. Четвертая строка основного уравнения – место, в котором поле Хиггса генерирует массу для оставшихся частиц материи стандартной модели.

В этой фантастической картине есть одна загвоздка: ни один эксперимент еще не смог обнаружить частицу Хиггса. Все остальные частицы стандартной модели были выявлены в ходе экспериментов, так что бозон Хиггса – недостающая часть головоломки. Если он действительно существует, как было предсказано, то стандартная модель снова одержит победу и сможет включить объяснение происхождения массы во впечатляющий список своих достижений. Подобно взаимодействиям всех остальных частиц, стандартная модель точно определяет, как частица Хиггса должна проявляться в ходе экспериментов. Единственное, чего стандартная модель нам не говорит, – какова масса этой частицы. Однако мы знаем массу частицы W и верхнего кварка, так что теория позволяет оценить диапазон, в котором находится масса частицы Хиггса. Большой электрон-позитронный коллайдер мог бы увидеть бозон Хиггса, если бы его масса находилась в более легкой части прогнозируемого диапазона. Но поскольку на этом коллайдере частицу Хиггса так и не удалось обнаружить, можно сделать предположение, что она слишком тяжела, чтобы получить ее на БЭПК (не забывайте, согласно уравнению E = mc² для создания более тяжелых частиц требуется больше энергии). Во время написания этих строк коллайдер Tevatron, расположенный в Национальной лаборатория ускорителей имени Ферми (Fermilab) неподалеку от Чикаго, пытается выявить частицу Хиггса, но пока безрезультатно. Вполне возможно, что у коллайдера Tevatron также недостаточно энергии для того, чтобы получить четкий сигнал о существовании частицы Хиггса, хотя он и принимает активное участие в ее поисках. Большой адронный коллайдер – самый мощный ускоритель среди всех когда-либо построенных. Он действительно должен решить вопрос существования бозона Хиггса, поскольку его энергия намного превышает верхний предел энергии, указанный стандартной моделью. Немного ниже мы объясним, почему так уверены в том, что БАК выполнит задачу, которую не смогли решить его предшественники, но сначала хотели бы объяснить, как именно предполагается получать частицы Хиггса в БАК.

Большой адронный коллайдер построен в том же 27-километровом кольцевом тоннеле, который использовался для БЭПК, однако, кроме самого тоннеля, все остальное изменилось. Совершенно новый ускоритель занимает теперь ту площадь, которую когда-то занимал БЭПК. Этот ускоритель способен разгонять по тоннелю в противоположных направлениях протоны до энергии, более чем в 7 тысяч раз превышающей их энергию массы. Благодаря возможности сталкивать протоны друг с другом на уровне таких энергий физика элементарных частиц вступает в новую эру, и если стандартная модель справедлива, это приведет к образованию множества частиц Хиггса. Протоны состоят из кварков, поэтому, если мы хотим понять, что должно произойти в БАК, все, что нам нужно, – определить соответствующие диаграммы Фейнмана.

1 ... 39 40 41 42 43 44 45 46 47 ... 51
Перейти на страницу:
Открыть боковую панель
Комментарии
Ксения
Ксения 25.01.2025 - 12:30
Неплохая подборка книг. Прочитаю все однозначно.
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее