Категории
Самые читаемые
ChitatKnigi.com » 🟠Бизнес » Менеджмент и кадры » Та самая хулиномика: Еще забористее. Издатая версия - Алексей Викторович Марков

Та самая хулиномика: Еще забористее. Издатая версия - Алексей Викторович Марков

Читать онлайн Та самая хулиномика: Еще забористее. Издатая версия - Алексей Викторович Марков
1 ... 39 40 41 42 43 44 45 46 47 ... 114
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Один из первых принципов дает нам правило умножения: если у вас вероятности независимые, то вероятность сразу двух этих событий будет равна произведению их вероятностей. Это не сработает, если события как-то связаны. Страховка построена на том, что в идеале страховая компания продает полисы на независимые события (или страхует жизни независимых друг от друга людей). Поэтому лондонский пожар – плохой пример страхового случая. Если кто-то в квартире оступился, у него лампа упала на ковер и подожгла шторы, а потом загорелась вся квартира, другие дома от этого не сгорят, они от этого неприятного происшествия никак не зависят.

В этом случае вероятность того, что сгорит весь город, страшно мала. Ведь вероятность того, что сгорят дом А, дом B и дом С, равна произведению вероятностей пожара в них. Если она равна одной тысячной, а в городе 1000 домов, то вероятность того, что все они сгорят, равна 1/1000 в тысячной степени, это хотя и не ноль, но можно считать, что ноль. Поэтому, если выписать очень-очень много независимых полисов, то риска разориться у страховой компании практически нет. Это фундаментальная идея, которая кажется простой и очевидной, но она совершенно точно не была такой, когда появилась.

9.5. Ожидание мата

Еще одна важная концепция, которую мы будем использовать, – это матожидание. Кто-то может называть его средним или наиболее ожидаемым результатом – это примерно взаимозаменяемые термины. Можно их немного по-разному объяснять в зависимости от того, говорим ли мы о среднем из известной нам выборки или из всей совокупности событий.

Но сначала надо таки понять, что такое случайная величина. Если мы проводим эксперимент и результат эксперимента – какое-то непредсказуемое число, то наш эксперимент выдает случайную величину. Ну, к примеру, если мы бросаем монету и присвоим решке 0, а орлу – 1, тогда вот мы и определили случайную величину, она принимает значение 0 или 1 совершенно случайно.

Существуют дискретные (то есть прерывистые) случайные переменные, типа той, что я только что привел в пример, – у нее могут быть только конкретные значения. Когда мы имеем дело со случайными, но вполне определенными событиями в идеальных условиях (как, например, подбрасывание абсолютно честной монеты), вероятность происшествия – это число нужных нам исходов, деленное на число всех возможных исходов. Так, два раза бросив монету, мы получим вероятность выпадения нужных нам двух решек в виде ¼, потому что исхода у нас четыре (решка-решка, решка-орел, орел-решка и два орла) – и все они имеют одинаковые шансы.

Есть еще непрерывные случайные величины, которые на некотором отрезке могут принимать любое значение. Ну вот возьмем мы, смешаем зачем-то горячий чай и холодную водку и опустим туда термометр. Кстати, его тоже изобрели в 17-м веке, и тогда концепцию температуры – для нас привычную и понятную – только-только начали применять. Вы уже догадались, что в нашем стакане с волшебным чаем температура – величина непрерывная, у нее неограниченное количество возможных значений, хотя минимальное и максимальное мы представляем неплохо.

Для дискретных случайных переменных матожидание можно обозначить греческой буквой μ (мю), и оно будет суммой всех результатов, помноженных на вероятность каждого из них.

В СЛУЧАЕ БРОСКА НАШЕЙУСЛОВНОЙ МОНЕТЫ МАТОЖИДАНИЕ БУДЕТ РАВНО ОДНОЙ ВТОРОЙ, И РЕЗУЛЬТАТА ТОЛЬКО ДВА.

А вообще, конечно, их может быть любое число, в том числе и бесконечное. Но их можно сосчитать и узнать средневзвешенную оценку, а она и называется матожиданием. Также его называют средним арифметическим. Но чтобы его посчитать, мы должны знать точные вероятности событий.

Для пущей ясности возьмем обычный (честно и точно сделанный) шестигранный кубик. Очевидно, что вероятность выпадения каждой цифры – одна шестая, граней ведь шесть. Сумма всех выпадений равна 1+2+3+4+5+6 = 21. Берем от каждой одну шестую (надеюсь, сможете сами?), складываем вместе (или просто 21 делим на 6), получаем три с половиной. Значит, матожидание броска кубика – 3,5. Если мы много-много раз бросим кубик и посчитаем среднее, то получится число, очень близкое к 3,5. Понятно, что в случае броска одного кубика ожидать 3,5 бессмысленно, а вот в случае двух ждать семерки – очень хорошая идея. И чем больше раз мы бросим кубик, тем ближе среднее будет к 3,5. Его и следует ждать математически, поэтому оно и называется матожидание.

Кроме среднего еще есть медиана – это когда половина результатов эксперимента больше, а половина меньше этой цифры. Она часто используется в демографии. Например, зарплату по регионам корректнее сравнивать не среднюю, а медианную, потому что очень маленькие или (чаще) очень большие зарплаты, даже если таких всего несколько, заметно искажают реальную картину. А на медиану они не влияют.

Если нам потребуется матожидание непрерывных функций, то идея там точно такая же, но складывать надо интегралы. Слово страшное (сам его боюсь), но вообще это просто сумма площадей под графиком функции. Например, взять температуру – вероятность того, что термометр покажет у кипятка ровно 100 градусов, равна нулю, потому что он всегда может показать 100,001 или 99,999. Таких цифр бесконечное количество, и у каждой конкретной из них вероятность равна нулю. Но можно посмотреть, например, плотность вероятности у какого-либо отрезка.

9.6. Генеральная совокупность против выборки

Теперь пару слов о совокупности. Мы измеряли признаки всех возможных вариантов выпадения кубика, хорошо и годно все посчитали. Но в реальности результаты экспериментов сосчитать трудно, потому что мы гораздо чаще имеем дело с выборками, а не со всей совокупностью результатов. Возьмем, например, дерево. Хотим мы оценить количество его листьев, берем 5 веток и считаем на них среднее количество листьев. Потом умножаем их на количество веток, и у нас получится примерная (но неплохая) оценка количества листьев на дереве.

Так вот, реальное среднее количество листьев на ветке мы не знаем, а лишь приблизительно определили из пяти наших веток. Его принято

1 ... 39 40 41 42 43 44 45 46 47 ... 114
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?