Категории
Самые читаемые
ChitatKnigi.com » 🟢Компьютеры и Интернет » Программное обеспечение » TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) - Сидни Фейт

TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) - Сидни Фейт

Читать онлайн TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) - Сидни Фейт
1 ... 39 40 41 42 43 44 45 46 47 ... 139
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

К сожалению, когда счетчик достигнет значения 15, точка назначения станет недоступной, а значит, администратору лучше использовать для всех связей одно и то же значение веса, равное 1.

Небольшое максимальное значение счетчика имеет одно преимущество. Вспомним, что недоступная точка назначения иногда приводит к временному зацикливанию пути. Метрики из сообщений об изменениях быстро доведут значение счетчика до 16, и такое кольцо зацикливания будет удалено. Больший предел счетчика привел бы к увеличению времени на уничтожение колец зацикливания.

8.9.13 Избыточный трафик

В больших сетях размер таблиц маршрутизации быстро увеличивается. Пересылка всего содержимого таблицы приведет к существенной дополнительной нагрузке на сеть. Кроме того, замедляется работа маршрутизаторов, которым требуется постоянно анализировать десятки и сотни строк из сообщений об изменениях, большинство из которых вовсе не нужно обновлять.

Небольшой по времени период обновления таблиц приводит к проблемам коммутации на дальние расстояния. Коммутируемые линии или цепи X.25 могут использоваться случайно, создавая отдельные всплески сетевого трафика. Для экономии такие линии и цепи часто закрывают после завершения пересылки данных. По возможности используется ручная конфигурация для связей с удаленными сетями.

Новые протоколы маршрутизации решают такие проблемы с помощью посылки изменений только после их внесения и включают в сообщение только сведения о реально измененных путях. Периодически маршрутизаторы обмениваются сообщениями Hello! (Привет!), позволяющими выяснить работоспособность друг друга, за исключением коммутируемых связей, для которых всегда предполагается нормальное состояние у соседа, пока попытка реальной пересылки данных не завершится неудачей.

8.10 Протокол RIP версии 2

Хотя стандарт RFC 1058, в котором была определена версия 1, был опубликован еще в 1983 г., версия 2 протокола RIP появилась только в 1993 г. К этому времени была проведена большая работа по созданию более сложного протокола, способного решить проблемы старой версии. Однако многим организациям нравится простота в инсталляции и использовании RIP старой версии.

Версия 1 была декларирована "исторической", и пользователям нужно было перейти на версию 2. RIP версии 2 предлагает простые решения большинства проблем первой версии. Однако для совместимости с версией 1 изменения были ограничены. Максимальное значение счетчика попаданий осталось равным 15, а все содержимое таблицы маршрутизации по-прежнему обновляется каждые 30 с. Но для передачи изменений стали использоваться многоадресные, а не широковещательные рассылки.

Большинство доработок в версии 2 связано с размещением дополнительной информации в сообщении об изменениях. Формат сообщения версии 2 показан на рис. 8.8.

Рис. 8.8. Формат сообщения RIP версии 2

Маска подсети (subnet mask) Помещена в сообщение Следующее попадание (next hop) Используется для отчета маршрутизатора через другие маршрутизаторы. Например, "нужно идти к сети N через маршрутизатор В". На рис. 8.9 показано, как один многопротокольный маршрутизатор проводит трансляцию между протоколами RIP и IGRP, а также пересылку информации о следующем попадании между двумя наборами маршрутизаторов. Тег маршрута (route tag) Это поле содержит информацию для внешнего протокола (например, для BGP). Наиболее популярно использование этого тега для указания номера автономной системы во внешней сети.

Рис. 8.9. Использование поля "Следующее попадание" в отчете маршрутизатора

8.10.1 Аутентификация в RIP версии 2

Как один из вариантов, место для первого изменения может быть использовано для аутентификации. Оно указывается как поле аутентификации при значении X'FFFF в поле идентификатора семейства адресов. Используемый тип аутентификации описывается в следующем поле.

Оставшиеся 16 бит содержат саму информацию об аутентификации. Хотя для версии 2 определен только один тип аутентификации (с идентификатором 2), использующий простой пароль, разработчики маршрутизаторов понемногу переходят на аутентификацию MD5. На рис. 8.10 показан формат сообщения с аутентификационной информацией.

Рис. 8.10. Сообщение версии 2 RIP, начинающееся с аутентификации

8.11 Переход на более интеллектуальные протоколы

Для перехода на более интеллектуальные протоколы были сделаны два улучшения. Как и RIP, лицензированный протокол IGRP компании Cisco использует вектор расстояния, однако в нем устранены недостатки RIP. OSPF и IS-IS являются протоколами по состоянию связи. В них создаются карты сети и исследуются все маршруты к точке назначения, а затем полученные метрики путей сравниваются друг с другом.

В этих протоколах поддерживаются дополнительные возможности, например способность разделять трафик по нескольким эквивалентным путям.

Кроме того, произошел переход на поддержку маршрутизации на основе типов обслуживания (TOS). Например, один из низкоскоростных маршрутов можно зарезервировать для интерактивного трафика, а путь с большей производительностью (но не слишком малой задержкой) использовать для пересылки больших массивов данных.

8.12 Протоколы IGRP и EIGRP

Хотя IGRP основан на векторе расстояния, его метрики вычисляются по формуле, учитывающей множество факторов, включая полосу пропускания и задержку сети. Дополнительно IGRP учитывает текущий уровень загрузки каждой связи, а также уровень ошибок при пересылке данных из одного конца в другой.

IGRP может разделять трафик по эквивалентным или почти эквивалентным путям. Когда существует несколько путей к точке назначения, большая часть трафика пересылается по пути с большей полосой пропускания.

Граничный маршрутизатор провайдера, использующий протокол IGRP, может собирать сведения от нескольких внешних автономных систем. Следовательно, в этом протоколе поддерживается маршрутизация между различными автономными системами.

EIGRP использует те же метрики и формулы маршрутизации, что и IGRP, но имеет несколько важных улучшений: существенно снижает дополнительный трафик, пересылая сообщения об изменениях только после их внесения в свою таблицу и передает при этом только сведения о реальных изменениях. В EIGRP реализован алгоритм исключения колец зацикливания.

В следующих разделах мы рассмотрим возможности IGRP и улучшения, вносимые EIGRP.

8.12.1 Маршрутизация в IGRP

Как и в RIP, маршрутизатор IGRP периодически распространяет среди соседей содержимое своей таблицы через широковещательные рассылки. Однако в отличие от RIP маршрутизатор IGRP начинает работу с уже сформированной таблицей маршрутизации для подключенных к нему подсетей. Эта таблица расширяется далее благодаря сведениям от ближайших соседей-маршрутизаторов. В сообщениях об изменениях протокола IGRP не содержится сведений о маске подсети. Вместо простого счетчика попаданий RIP применяются различные типы информации о метриках, а именно:

Delay Задержка Описывает (в десятках мкс) время на достижение точки назначения при отсутствии нагрузки в сети. Bandwidth Полоса пропускания Равна 10 000 000, деленным на наименьшую полосу пропускания по заданному маршруту (измеряется в Кбит/с). Например, наименьшая полоса пропускания в 10 Кбит/с соответствует метрике в 1 000 000 Кбит/с. Load Нагрузка Измеряется как доля полосы пропускания по заданному маршруту, используемая в текущий момент времени. Кодируется числами от 0 до 255 (255 соответствует нагрузке в 100%). Reliability Надежность Часть датаграмм, пришедшая без повреждения. Кодируется числами от 0 до 255 (255 соответствует 100-процентному отсутствию повреждений в датаграммах). Hop count Счетчик попаданий Определяет число попаданий до точек назначения. Path MTU MTU пути Наибольшее значение Maximum Transmission Unit (MTU) для датаграмм, которые можно переслать по любой связи общего пути.

Значения для задержки, полосы пропускания и MTU берутся из конфигурационной информации маршрутизатора, а значения для нагрузки и надежности вычисляются динамически на основе информации, которой обмениваются маршрутизаторы. В таблице 8.3 дано несколько примеров для кодов задержки и полосы пропускания.

1 ... 39 40 41 42 43 44 45 46 47 ... 139
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈