Сверхъестественное в первобытном мышлении - Люсьен Леви-Брюль
Шрифт:
Интервал:
Закладка:
кутадимур (крайний палец);
кутадимур гурунгу зинга (палец, следующий за ним);
иль гет (средний палец);
клак-нитуи-гет (указательный палец, которым мечут копье);
кабагет (палец, ведущий весло, большой палец);
черта или тиап (запястье);
куду (локоть);
зугу квуикк (плечо);
сусу маду (грудь, грудная кость);
коза дадир (правая сторона груди);
вадогам сусу маду (другая сторона груди, грудная кость)
и т. д. в обратном порядке, причем каждый термин сопровождается словом вадогам (другая сторона). Ряд этот кончается мизинцем правой руки. Имена являются просто именами частей тела, а не именами числительными.
Мамус, туземец с острова Муррей, считал следующим образом:
кеби ке (мизинец);
кеби ке неис (безымянный палец);
зип ке (средний палец);
баур ке (палец копья указательный);
ау ке (большой палец);
кеби кокне (запястье);
кеби кокне сор (тыльная сторона запястья);
ау кокне (большая кость, внутренняя часть локтя);
ау кокне сор (внешняя часть локтя);
тугар (плечо);
кенани (подмышка);
гилид (надключичная ямка);
нано (левая сторона груди);
копор (пуп);
неркеп (верхняя часть груди);
оп неркеп (горло);
нерут нано (вторая сторона груди);
нерут гилид;
нерут кенани; и т. д. до 29;
кеби ке неруте (другой мизинец)…
Мы совершенно ясно видим, что употребляемые выражения не служат именами числительными. Одно и то же имя доро не могло бы служить одновременно для обозначения как 2, 3, 4, так и 19, 20, 21, если бы не определялось местом, куда в момент произнесения указывает один из пальцев правой руки (указательный, средний или безымянный) или один из таких же пальцев левой руки.
Эта система счета позволяет доходить до чисел довольно значительных, если части тела, перечисляемые в определенном порядке, сами ассоциируются с другими предметами, более удобными для операции счета. Вот пример, взятый у даяков с острова Борнео. Речь шла о том, чтобы известить определенное число восставших, но затем покорившихся селений относительно суммы штрафа, который они обязаны уплатить. Как должен поступить в данном случае туземный посланец? «Он принес несколько сухих листьев и разделил их на кусочки. Однако я заменил эти кусочки листьев клочками бумаги, более удобными. Он разложил клочки один за другим на столе, пользуясь одновременно пальцами счета до 10. Затем он положил на стол ногу, считая на ней каждый палец, указывая одновременно на клочок бумаги, который должен был соответствовать названию селения с именем его вождя, числом его воинов и суммой штрафа. Когда посланец перебрал все пальцы ног, он снова вернулся к пальцам рук. К концу моего списка перед ним было 45 кусков бумаги, разложенных на столе. Тогда он попросил меня снова повторить мое поручение, что я и сделал, в то время как он в прежнем порядке подсчитывал пальцы рук и ног, перебирая клочки бумаги. „Вот, — сказал он, — какие ваши буквы: вы белые, вы не читаете так, как мы“. Поздно вечером он повторил все, кладя по очереди палец на каждый клочок бумаги, и сказал: „Ну, если я завтра буду помнить, все будет хорошо; оставим эти бумажки на столе“. После этого он перемешал клочки в одну кучу. Назавтра утром мы, как только встали, отправились с ним к столу. Он разложил клочки бумаги в том порядке, в каком они были накануне, и совершенно точно повторил все вчерашние подробности. В течение почти целого месяца, переходя от селения к селению, далеко в глубь острова, он ни разу не забывал различных сумм и т. д». Замена клочками бумаги пальцев рук и ног особенно замечательна: она показывает нам совершенно чистый случай еще весьма конкретной абстракции, свойственной пра-логическому мышлению.
Точно так же островитяне Торресова пролива, у которых очень немного числительных, имеют обыкновение приобретать свои челноки, арендуя их на три года, к концу которых они должны платить. Такой способ покупки предполагает довольно сложное счетоводство, вплоть до своего рода математического вычисления. Даже австралийцы, которые не имеют числительных более двух, находят способ производить сложение. «Туземец питта-питта имеет слова лишь для двух первых чисел… дальше четырех он скажет вообще: „много-множество“. Однако он наверное имеет зрительное представление (выражение, которое совпадает с приведенным выше выражением Гэддона) о числах более крупных. Я часто убеждался в этом, прося его сосчитать, сколько он имеет пальцев на руках и ногах, отмечая при этом число на песке. Он начинает счет с раскрытой руки, загибая по два пальца этой руки: для каждой пары он делает двойной знак на песке… Эти знаки параллельны друг другу, и, когда счет окончен, он говорит пакоола (два) для каждой пары. Метод употребляется во всем районе, он часто применяется старейшинами племени для того, чтобы знать число лиц, имеющихся налицо в стоянке».
Часто наблюдатели, не описывая конкретного счисления с такой точностью, как указанные выше авторы, позволяют нам, однако, выявить это конкретное счисление в их сообщениях. Так, Д. Чомерс сообщает, что у бугилаев (британская Новая Гвинея) он обнаружил следующие числительные:
1 = тарангеза (мизинец левой руки);
2 = мета кино (следующий палец);
3 = гуигимета кина (средний палец);
4 = топеа (указательный палец);
5 = манда (большой палец);
6 = габен (запястье);
7 = транкгимбе (локоть);
8 = подеи (плечо);
9 = нгама (левая сторона груди);
10 = дала (правая сторона груди).
Позволительно думать, судя по фактам, приведенным выше, что более внимательное и углубленное наблюдение показало бы, что и здесь перед нами скорее названия частей тела, служащих для конкретного счисления, чем имена числительные. Это счисление, впрочем, может незаметно стать полуотвлеченным, полу конкретным, по мере того как имена, особенно первые пять, пробуждают в сознании менее сильное представление о частях тела и более сильно идею определенного числа, которая обнаруживает тенденцию отделиться от представления о частях тела и сделаться приложимой к любым предметам. Ничто, однако, не доказывает, что имена числительные образуются именно таким путем! Для чисел 1 и 2 правилом, по-видимому, является как раз обратный путь.
У западных племен Торресова пролива Гэддон находит
1 = урапу,
2 = окоза,
3 = окоза урапун,
4 = окоза окоза,
5 = окоза окоза урапун,
6 = окоза окоза окоза.
Дальше туземцы говорят вообще: рас (множество). Я обнаружил также на Муралуге
5 = набигет,
10 = набигет, набигет,
15 = набикоку,
20 = набикоку набикоку.
Гет означает руки, коку — ноги. Гэддон, однако, прибавляет: «Не следует думать, что набигет является именем числительным 5, оно выражает только, что речь идет о стольких предметах, сколько на руке пальцев». Другими словами, число еще не стало отвлеченным.
На Андаманских островах, несмотря на крайнее богатство языка, имен числительных только два: 1 и 2. Три означает «на один больше», 4 — «на несколько больше», 5 — «всё», и здесь арифметика останавливается. В нескольких племенах, однако, доходят до 6, 7, а может быть, даже до 10 при помощи носа и пальцев. Счет начинают, ударяя мизинцем правой или левой руки по носу, произнося «один», затем, ударив следующим пальцем, считают «два» и т. д. до 5, причем каждый последующий удар сопровождается словом анка («и этот»). Затем продолжают следующей рукой, после чего две руки соединяют для обозначения 5 + 5, счет заканчивается словом ардура («всё»). Немногие туземцы, однако, доходят до этого количества, обычно операция счета не в состоянии превысить 6 или 7.
Часто имена числительные в собственном смысле слова, когда возможно добраться до их первоначального смысла, обнаруживают существование конкретного счисления, аналогичного, если не тождественного, тому счислению, образцы которого мы видели. Однако, вместо того чтобы при счете перебирать в восходящем порядке разные части тела на одной стороне верхней части тела и затем спускаться по другой стороне, это конкретное счисление связано с движениями, которые совершаются пальцами при счете. Так возникают понятия, которые Кэшинг очень удачно назвал ручными и подверг углубленному, оригинальному, можно даже сказать, экспериментальному анализу, ибо один из существенных приемов его метода заключался в воспроизведении психологических состояний первобытных людей путем точного выполнения тех же последовательных движений, которые ими выполнялись при счете.