Категории
Самые читаемые
ChitatKnigi.com » 🟢Компьютеры и Интернет » Прочая околокомпьтерная литература » 3.Внутреннее устройство Windows (гл. 8-11) - Марк Руссинович

3.Внутреннее устройство Windows (гл. 8-11) - Марк Руссинович

Читать онлайн 3.Внутреннее устройство Windows (гл. 8-11) - Марк Руссинович
1 ... 36 37 38 39 40 41 42 43 44 45
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

ЭКСПЕРИМЕНТ: просмотр общей и закрытых карт кэша

Команда dt отладчика ядра позволяет увидеть определения структур данных общей и закрытой карт кэша в работающей системе. Во-первых, выполните команду !filecache и найдите запись в выводе VACB с именем известного вам файла. B нашем примере таковым будет справочный файл из Debugging Tools for Windows:

8653c828 120 160 0 0 debugger.chm

Первый адрес указывает местонахождение структуры данных области управления (control area), с помощью которой диспетчер памяти отслеживает диапазон адресов. (Более подробные сведения см. в главе 7.) B области управления хранится указатель на объект «файл», coответствующий представлению в кэше. Объект «файл» идентифицирует экземпляр открытого файла — в данном случае справочного файла из Debugging Tools for Windows. Теперь, чтобы увидеть структуру области управления, введите следующую команду с адресом идентифицированного вами элемента в этой области:

Потом изучите объект «файл», на который ссылается область управления:

Интерфейсы файловых систем

При первом обращении к файловым данным для чтения или записи драйвер файловой системы должен определить, проецируются ли нужные части файла на системный кэш. Если нет, драйвер файловой системы должен вызвать функцию CcInitializeCacheMap для подготовки индивидуальных для каждого файла структур данных кэша.

Далее драйвер файловой системы вызывает одну из нескольких функций для доступа к данным файла. Существует три основных метода доступа к кэшируемым данным, каждый из которых рассчитан на применение в определенной ситуации:

копирование (copy method) — пользовательские данные копируются между буферами кэша в системном пространстве и буфером процесса в пользовательском пространстве;

проецирование и фиксация (mapping and pinning method) — данные считываются и записываются прямо в буферы кэша по виртуальным адресам;

обращение к физической памяти (phisycal memory access method) — данные считываются и записываются прямо в буферы кэша по физическим адресам.

Чтобы избежать бесконечного цикла при обработке диспетчером памяти ошибки страницы, драйверы файловых систем должны поддерживать два варианта чтения файлов — с кэшированием и без. B таких случаях диспетчер памяти вызывает файловую систему для получения данных из файла (через драйвер устройства) и запрашивает операцию чтения без кэширования, устанавливая в IRP флаг «no cache».

Рис. 11–13 иллюстрирует типичное взаимодействие между диспетчером кэша, диспетчером памяти и драйверами файловой системы в ответ на пользовательские операции файлового ввода-вывода (чтения или записи). Диспетчер кэша вызывается файловой системой через интерфейсы копирования (функции CcCopyRead и CcCopyWrite). Чтобы обработать, например, операцию чтения, инициированную через CcFastCopyRead или CcCopyRead, диспетчер кэша создает представление в кэше для проецирования части запрошенного файла и считывает файловые данные в пользовательский буфер, копируя их из представления. Операция копирования генерирует ошибки страниц по мере обращения к каждой ранее недействительной странице в представлении, и в ответ диспетчер памяти инициирует ввод-вывод без кэширования, используя драйвер файловой системы для выборки данных, соответствующих части файла, спроецированной на ту страницу, которая оказалась недействительной.

Рис. 11–13. Взаимодействие файловой системы с диспетчерами кэша и памяти

B следующих трех разделах мы рассмотрим все три ранее упомянутых механизма доступа к кэшу, их предназначение и принципы использования.

Копирование данных в кэш и из него

Поскольку системный кэш находится в системном пространстве, он проецируется на адресное пространство каждого процесса. Однако, как и любые другие страницы системного пространства, страницы кэша недоступны в пользовательском режиме, поскольку иначе в защите появилась бы потенциальная дыра. (Например, процесс, не имеющий соответствующих прав, мог бы считать данные из файла, который находится в какой-либо части системного кэша.) Таким образом, операции чтения и записи пользовательских приложений в файлы должны обслуживаться процедурами режима ядра, которые копируют данные между буферами кэша в системном пространстве и буферами приложения, расположенными в адресном пространстве процесса. Функции, которые драйверы файловой системы могут использовать для выполнения этих операций, перечислены в таблице 11 -4.

Активность операций чтения из кэша можно увидеть через счетчики производительности и системные переменные, представленные в таблице 11-5.

Кэширование с применением интерфейсов проецирования и фиксации

По мере чтения и записи данных в дисковые файлы пользовательскими приложениями драйверы файловых систем должны считывать и записывать данные, описывающие сами файлы (метаданные, или данные о структуре тома). Так как драйверы файловых систем выполняются в режиме ядра, они могут модифицировать данные непосредственно в системном кэше при условии уведомления об этом диспетчера кэша. Для поддержки такой оптимизации диспетчер кэша предоставляет функции, перечисленные в таблице 11-6. Эти функции позволяют драйверам файловых систем находить в виртуальной памяти нужные метаданные и напрямую модифицировать их без использования промежуточных буферов.

Если драйверу файловой системы нужно считать метаданные из кэша, он вызывает интерфейс диспетчера кэша, отвечающий за проецирование, чтобы получить виртуальный адрес требуемых данных. Диспетчер кэша подгружает в память все запрошенные страницы и возвращает управление драйверу файловой системы. После этого драйвер может напрямую обращаться к данным.

Если драйверу файловой системы необходимо модифицировать страницы кэша, он вызывает сервисы диспетчера кэша, отвечающие за фиксацию модифицируемых страниц в памяти. Ha самом деле эти страницы не блокируются в памяти (как это происходит в тех случаях, когда драйвер устройства блокирует страницы для передачи данных с использованием прямого доступа к памяти). По большей части драйвер файловой системы помечает их поток метаданных как «no write», сообщая подсистеме записи модифицированных страниц диспетчера памяти (см. главу 7) не сбрасывать страницы на диск до тех пор, пока не будет явно указано иное. После отмены фиксации страниц диспетчер кэша сбрасывает на диск все измененные страницы и освобождает представление кэша, которое было занято метаданными.

Интерфейсы проецирования и фиксации решают одну сложную проблему реализации файловых систем — управление буферами. B отсутствие возможности прямых операций над кэшированными метаданными файловая система была бы вынуждена предугадывать максимальное число буферов, которое понадобится ей для обновления структуры тома. Обеспечивая файловой системе прямой доступ к ее метаданным и их изменение непосредственно в кэше, диспетчер кэша устраняет потребность в буферах и просто обновляет структуру тома в виртуальной памяти, предоставленной диспетчером памяти. Единственным ограничением файловой системы в этом случае является объем доступной памяти.

Вы можете наблюдать за интенсивностью операций, связанных с фиксацией и проецированием в кэше, с помощью счетчиков производительности и системных переменных, перечисленных в таблице 11-7.

Кэширование с применением прямого доступа к памяти

B дополнение к интерфейсам проецирования и фиксации, используемым при прямом обращении к кэшированным метаданным, диспетчер кэша предоставляет третий интерфейс — прямой доступ к памяти (direct memory access, DMA). Функции DMA применяются для чтения или записи страниц кэша без промежуточных буферов, например сетевой файловой системой при передаче данных по сети.

Интерфейс DMA возвращает файловой системе физические адреса кэшируемых пользовательских данных (а не виртуальные, которые возвращаются интерфейсами проецирования и фиксации), и эти адреса могут быть использованы для прямой передачи данных из физической памяти на сетевое устройство. Хотя при передаче небольших порций данных (1–2 Кб) можно пользоваться обычными интерфейсами копирования на основе буферов, при передаче больших объемов данных интерфейс DMA значительно повышает быстродействие сетевого сервера, обрабатывающего файловые запросы от удаленных систем.

Для описания ссылок на физическую память служит список дескрипторов памяти (memory descriptor list, MDL) (см. главу 7). DMA-интерфейс диспетчера кэша состоит их четырех функций (таблица 11-8).

1 ... 36 37 38 39 40 41 42 43 44 45
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈