Диалоги (август 2003 г.) - Александр Гордон
Шрифт:
Интервал:
Закладка:
Здесь есть такой эффект: мы считаем эти эрги, думая, что всё это взрывается как бомба, что энергия уходит равномерно во все стороны, а это не факт. Можно сильно сэкономить, если предположить, что это направленный взрыв, как луч прожектора. Если мы попадаем в этот луч, тогда требуется меньше энергии, но тогда мы много всплесков не досчитываемся.
А.П. Видим только то, что попадает лучом на нас.
Б.Ш. Это самое драматическое время, эпоха всех этих диспутов, голосований, когда люди более или менее пришли к галактической модели. На самом деле осталось два кандидата, и в это время доминировала как раз теория слияния двух нейтронных звёзд.
Но сейчас надо сказать, что ключевым моментом утверждения космологической модели был, наверное, 97 год?
А.П. Да, был момент, когда информация по всплескам накапливалась-накапливалась, но вся эта информация происходила из гамма-диапазона. Всплески оставались гамма-всплесками, но очень хотелось посмотреть, а есть ли что-то там в оптике, в других диапазонах волн, потому что, увидев что-то в оптике, можно отождествить это с каким-то известным астрономическим объектом…
А.Г. И кроме того, это всё-таки абсолютная локализация.
А.П. Да, и кроме всего, это более точная локализация. Совершенно точно.
Б.Ш. Там градусы, здесь – секунды.
А.П. В 97-м году был запущен итало-голландский спутник «Беппо-Сакс», который имел рентгеновские телескопы, и который мог достаточно быстро навестись на область локализации гамма-всплеска. То есть если мы в гамма-диапазоне имеем точность несколько градусов, то рентгеновский телескоп может уже эту область посмотреть и определить, есть ли там источник с точностью несколько угловых минут и даже лучше – в зависимости от яркости источника.
И вот 27 февраля 97-го года после очередного всплеска «Беппо-Сакс» навелся своим рентгеновским телескопом на область локализации всплеска, и увидел послесвечение в рентгене, т.е. увидел рентгеновский источник, который затухал, достаточно точно определил его координаты, передал на Землю, и далее большие оптические телескопы стали смотреть в эту точку. И, о, счастье, мы увидели то, что называем «оптический транзиент», оптический компонент от гамма-всплеска.
Почему так уверенно определили, что это оптический компонент? Его не было ни в каких каталогах, то есть это был новый источник и он затухал. Таким образом, было открыты рентгеновское послесвечение и оптический компонент. И что самое интересное, через некоторое время, когда источник достаточно потух, в оптике на его месте увидели галактику. Это называется родительская галактика. Увидели предположительно там, где сидит этот источник всплеска. И измерили спектральные линии от этой галактики.
А.Г. Их красное смещение…
А.П. Совершенно точно, нашли красное смещение – прямое доказательство космологической природы источников.
А.Г. И как далеко располагалась эта галактика?
Б.Ш. Здесь красное смещение – единица, это примерно 10 миллиардов световых лет.
С тех пор уже известны десятки таких случаев отождествлений, найдены послесвечения, для многих измерены красные смещения. Все – на космологических расстояниях, рекорд красного смещения – 4 с половиной. Вот один из таких случаев. Его уникальность в том, что здесь было поймано прямое оптическое свечение ещё в тот момент, когда продолжался гамма-всплеск.
А.П. Это знаменитый всплеск 23 января 1999 года.
Б.Ш. Оптический телескоп-автомат успел сработать и навестись по сигналу от BATSE, когда продолжался всплеск. Так вот, это свечение, находясь на горизонте Вселенной, было 8-й звёздной величины – можно увидеть в сильный бинокль.
А.П. То есть если знать куда смотреть, можно этот источник легко увидеть.
Б.Ш. На этом снимке он уже снизил яркость в миллион раз и всё равно ярче родительской галактики. Это говорит о масштабах явления.
В тот момент, в 97-98 годах, кроме модели, о которой я рассказывал – слияние двух нейтронных звёзд – появилась другая. Она появилась на самом деле ещё в начале 90-х, Стен Вусли её вначале предложил – что, может, это какой-то необычный тип сверхновой. Обычная сверхновая – разлетается огромная масса вещества и долго светит. Если предположить, что какая-то порция энергии прорвалась через всё это вещество в открытый космос, тогда она могла и дать такой всплеск.
И, начиная с 99 года, стали появляться всё новые и новые данные, что это скорее всего гиперновая. Во-первых – гамма-всплески происходят в областях, где идёт очень интенсивное звездообразование, где много вещества. В случае гиперновой всё понятно, это массивная звезда, она гибнет там же, где рождается. Если это пара нейтронных звёзд, она успевает улететь Бог знает куда.
Если проанализировать всю статистику гамма-всплесков, то получается, что источники к настоящему времени вымирают, раньше их было больше, теперь гораздо меньше.
А.Г. Ну да, мы же видим горизонт не только в пространстве, но и во времени. Всё это происходило 10 миллиардов лет назад.
Б.Ш. Совершенно верно. Но во Вселенной всё потихоньку вымирает – меньше квазаров, меньше сверхновых, меньше гамма-всплесков. Отчего, кстати сказать, в старой Вселенной жить безопасней.
А.Г. Чем ближе к нам, тем беднее картина – ближе во времени.
Б.Ш. Но ещё не вечер – звёзды типа Солнца будут рождаться ещё миллиарды лет.
А.П. Возвращаясь к истории открытий. История делается на наших глазах и отчасти нашими руками. Сейчас, кажется, наступил очередной ключевой момент в понимании природы всплесков.
29 марта этого года произошёл всплеск (они называются по дате) GRB030329. Он был уникален опять-таки курьёзом его обнаружения. Спутник НЕТЕ-2, который предназначен для быстрой передачи информации исследователям, что-то обнаружил, передал сообщение, что что-то зарегистрировано, но это точно не гамма-всплеск.
Через два часа, примерно, учёные, которые эксплуатируют спутник, пришли, посмотрели данные телеметрии и увидели, что на самом деле это ярчайший гамма-всплеск. Автоматика дала сбой – алгоритмы делаются людьми, людям свойственно ошибаться. Алгоритмам – тоже. Таким образом, примерно через два часа по миру через Интернет были распространены координаты гамма-всплеска. Они были известны с большой точностью – примерно три угловые минуты – и можно было наводить телескопы. Но в Европе и Америке была ночь, а телескопы были наведены в Австралии и Японии. И в Австралии уже через полчаса было обнаружено яркое послесвечение от всплеска.
Тут же передали по миру координаты. А мы сидели и ждали темноты. То, что мы увидели, когда настала ночь, вы видите на снимке.
А.Г. Это ваша группа делала?
А.П. Да, в Крымской обсерватории, КрАО.
А.Г. 30 марта?
А.П. 29 марта был первый снимок. И видно, как в течение 9 дней этот ярчайший объект постепенно уходит под чувствительность данного телескопа. Это не значит, что всплеск уже затух – мощные телескопы его продолжают наблюдать. Он сейчас порядка 22-й звёздной величины, что вполне наблюдаемо большими наземными телескопами. И по-видимому, его ещё долго можно будет наблюдать.
Но чем он был замечателен? Оказалось – когда на 14-й день детально измерили спектры – что эти спектры как две капли воды похожи на спектры сверхновой. Тут же в сети появилось сообщение…
Б.Ш. «Загадка всплесков решена!»
А.П. Да, решена – это сверхновая. Но не всё так просто. Всплески продолжают преподносить сюрпризы. Дело в том, что сверхновые имеют определённую кривую блеска – спадающую. А этот источник – после первоначального быстрого угасания – уже больше месяца стоит на одном месте, не падает, это первое. Второе: с большой долей уверенности можно говорить, что он меняет свою звёздную величину примерно на половину звёздной величины на протяжении суток, что никак не похоже на поведение кривой блеска сверхновой.
Б.Ш. Подмигивает и ухмыляется – я бы так сказал.
А.П. Поэтому рано говорить, что проблема источников всплесков уже решена.
А.Г. А какой объект может быть кандидатом на роль гиперновой?
А.П. Очень массивная звезда.
А.Г. Во сколько раз массивнее Солнца?
А.П. В 50, в 100 – ну, может быть, в 30, не знаю.
А.Г. И сколько таких объектов в нашей галактике?
А.П. Тысячи. Много…
Б.Ш. Более того, в нашей галактике есть одна звезда, про которую думают, что она рванёт как гиперновая. Эта звезда не так далеко, называется «Эта Киля» – она уже испускает предсмертные конвульсии.
Если она лучом своим попадёт в нас – мы это переживём, но она угробит все искусственные спутники Земли, мы останемся, скорее всего, без Интернета, без связи. Но она, скорее всего, промажет.