Роботы наступают - Мартин Форд
Шрифт:
Интервал:
Закладка:
Как только будет обеспечена стабильная работа системы, сотрудники Центра Андерсона планируют открыть к ней доступ через Интернет, чтобы врачи по всему миру могли использовать ее в качестве мощного ресурса. По мнению специалиста по лейкемии Кортни Динардо, технология Watson «может сделать онкологическую помощь более доступной», предоставляя любому врачу «доступ к самым последним научным знаниям и опыту Онкологическому центру Андерсона». «Что касается врачей, не являющихся специалистами по лейкемии, — продолжает она, — система может служить источником независимого экспертного мнения, давая им возможность пользоваться теми же знаниями и той же информацей», которые использует в своей работе лучший в стране онкологический центр. Динардо также считает, что, помимо рекомендаций по лечению конкретных пациентов, система «станет уникальной исследовательской платформой, которая может использоваться для формулирования проблем, проверки гипотез и решения важнейших научных задач»{206}.
Хотя в настоящее время Watson, конечно, и является самым амбициозным и выдающимся примером практического применения технологий искусственного интеллекта в медицине, существуют и другие, не менее важные примеры. В 2009 г. исследователи из Клиники Мейо в Рочестере, в штате Миннесота создали искусственную нейронную сеть, предназначенную для диагностирования случаев эндокардита — заболевания, связанного с воспаление внутренней оболочки стенки сердца (эндокарда). Как правило, при эндокардите в пищевод пациенту вводится зонд с целью диагностирования потенциально смертельной инфекции, которая может быть причиной воспаления. Данная процедура не только причиняет неудобства пациенту, но еще и связана с большими расходами и риском для здоровья. Чтобы обойтись без инвазивного вмешательства, врачи из клиники Мейо научили нейронную сеть ставить диагноз на основе результатов стандартных анализов и наблюдаемых симптомов. В ходе исследования с участием 189 пациентов было установлено, что система выдает правильный результат более чем в 99 % случаев, избавляя свыше половины пациентов от необходимости проходить инвазивную диагностическую процедуру{207}.
Одним из важнейших последствий внедрения технологий искусственного интеллекта в медицине должно стать снижение процента непоправимых ошибок как при диагностировании, так и в лечении. В ноябре 1994 г. журналистка 39 лет, мать двоих детей Бетси Леман, получившая широкую известность благодаря своей колонке о связанных со здоровьем проблемах в The Boston Globe, получила назначение на третий курс химиотерапии — очередной этап ее непрекращающейся борьбы с раком молочной железы. Леман госпитализировали в Институт онкологии Дана-Фарбер в Бостоне, считающийся — наряду с Центром Андерсона — одним из лучших онкологических центров в стране. В соответствии с планом лечения Леман должна была получить циклофосфамид — высокотоксичный препарат, убивающий клетки опухоли, — в очень большой дозе. Делавший назначение научный сотрудник по ошибке написал в направлении не ту цифру, в результате чего доза, в которой Леман получила препарат, оказалась в четыре раза выше предусмотренной планом лечения. 3 декабря 1994 г. Леман умерла от передозировки препарата{208}.
Леман лишь одна из 98 000 пациентов, ежегодно умирающих в США в результате медицинских ошибок, которые можно было предотвратить{209}. По оценке Института Медицины США, в 2006 г. от одних только ошибок при назначении препаратов пострадали как минимум 1,5 млн американцев. Цена этих ошибок — $3,5 млрд в виде дополнительных расходов на лечение в год{210}. Применение системы искусственного интеллекта с доступом к подробной медицинской документации, а также информации о препаратах, включая данные о вызываемых ими побочных эффектах и возможном токсическом действии, вероятно, позволило бы предотвратить такие ошибки даже в сложных случаях, предполагающих взаимодействие нескольких препаратов. Такая система могла бы использоваться врачами и медсестрами в качестве интерактивного помощника, обеспечивая мгновенную проверку как безопасности, так и эффективности препарата перед его применением и тем самым спасая людские жизни или избавляя пациентов от ненужных неудобств и расходов, в особенности в ситуациях, когда персонал больницы теряет внимание из-за усталости или отвлекающих факторов.
Как только в своей эволюции в качестве практического инструмента в медицине технологии искусственного интеллекта достигнут точки, когда они смогут выступать в качестве компетентных консультантов, способных формулировать независимые заключения со стабильно высоким уровнем качества, они также могут помочь обуздать высокие издержки, связанные с профессиональной ответственностью врачей. Стараясь обезопасить себя от возможных судебных исков, многие специалисты предпочитают перестраховаться и назначают своим пациентам все мыслимые анализы. Имея на руках задокументированное независимое мнение, сформулированное системой искусственного интеллекта в соответствии с принятыми стандартами медицинской практики, врачи получают своего рода «индульгенцию», которая может защитить их от таких исков. Это может привести к снижению расходов на ненужные медицинские анализы и обследования, а также снизить стоимость страхования на случай врачебной ошибки[36].
Если заглянуть еще дальше в будущее, можно легко представить, как внедрение технологий искусственного интеллекта приведет к настоящей революции в подходах к оказанию медицинских услуг. Как только машины докажут, что они способны ставить точный диагноз и назначать эффективное лечение, вероятно, врачам больше не нужно будет лично присутствовать при каждом визите пациента в клинику.
Сразу после триумфальной победы Watson в «Jeopardy!» в 2011 г. я предположил в своей колонке в The Washington Post, что с внедрением этой технологии откроется возможность для формирования нового класса медицинских специалистов: людей с четырехлетним университетских образованием или степенью магистра, имеющих навыки общения с пациентами и проведения осмотров с последующей передачей этой информации в стандартную систему диагностирования и назначения лечения{211}. Имея навыки работы с широким кругом наиболее часто встречающихся случаев, эти новые врачи, услуги которых будут обходиться дешевле, помогут справиться с резким ростом числа пациентов с хроническими проблемами и заболеваниями, включая избыточный вес и диабет.
Разумеется, представляющие интересы врачей организации будут противодействовать появлению этих менее образованных конкурентов[37]. Однако в реальности подавляющее большинство выпускников медицинских факультетов не испытывают интереса к работе в качестве семейных врачей; еще меньше их вдохновляет перспектива работы в сельских районах страны. По данным различных исследований, в течение ближайших пятнадцати лет на фоне ухода на пенсию многих специалистов система здравоохранения столкнется с нехваткой 200 000 врачей. При этом планом реализации Закона о доступном медицинском обслуживании предусматривается включение в систему здравоохранения 32 млн новых пациентов{212}. Не будем забывать и о стареющем населении, которое все больше нуждается в медицинской помощи. Учитывая, что новоиспеченные врачи, которые обычно обременены большими долгами по образовательным кредитам, в большинстве своем отдают предпочтение более прибыльным специальностям, проблема нехватки врачей-терапевтов, оказывающих первичную медицинскую помощь, будет стоять особенно остро.
Тут и пригодится этот новый класс специалистов, обученных работе со стандартной системой искусственного интеллекта, заключающей в себе все те знания, на приобретение которых у обычных врачей уходит по меньшей мере десять лет интенсивной подготовки. Они смогут работать с обычными случаями, направляя пациентов, нуждающихся в более узкоспециализированной помощи, к врачам. Новые перспективы построения интересной карьеры могут пойти на пользу выпускникам колледжей, особенно если учесть сужение рынка труда в других сферах под влиянием развития интеллектуального ПО.
В некоторых областях медицины, в частности тех из них, которые не требуют непосредственного взаимодействия с пациентами, развитие технологий искусственного интеллекта должно привести к резкому росту производительности труда и в конечном итоге — к полной автоматизации. Например, врачей-рентгенологов учат интерпретировать изображения, полученные с помощью различных методов сканирования, которые используются в медицине. Учитывая стремительный прогресс в области обработки и распознавания изображений, можно предположить, что совсем скоро машины узурпируют задачи, традиционно выполняемые рентгенологами. Программное обеспечение уже умеет распознавать людей на фотографиях, опубликованных в Facebook, и даже помогает выявлять потенциальных террористов в аэропортах. В сентябре 2012 г. FDA выдала разрешение на применение автоматизированной системы ультразвуковой диагностики рака молочной железы. Данное устройство, разработанное компанией U-Systems, Inc., предназначено для выявления опухолей у тех 40 % женщин, которым не подходит стандартная технология маммографического исследования по причине высокой плотности тканей молочной железы. Интерпретацией изображений по-прежнему занимаются рентгенологи, но теперь для принятия решения им достаточно трех минут. Для сравнения: при использовании традиционных ручных средств ультразвуковой диагностики на анализ полученных изображений уходит двадцать-тридцать минут{213}.