Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Прочая научная литература » Нейтронные звезды. Как понять зомби из космоса - Москвич Катя

Нейтронные звезды. Как понять зомби из космоса - Москвич Катя

Читать онлайн Нейтронные звезды. Как понять зомби из космоса - Москвич Катя
1 ... 37 38 39 40 41 42 43 44 45 ... 79
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Поскольку во многих уравнениях состояния предполагалось существование свободных кварков в различных комбинациях, Бейм задался вопросом, возможно ли разбить нейтроны и высвободить кварки, а после этого изучить полученный “суп”, который может быть максимально приближенным к веществу внутреннего ядра. Похожие условия существовали во Вселенной всего через несколько миллионных долей секунды после Большого взрыва, когда еще не сформировались протоны и нейтроны. Тогда эта ранняя Вселенная представляла собой кварк-глюонную плазму – этакий “суп” из странных частиц.

У Бейма и других теоретиков – включая Джеймса Бьёркена и Ларри Маклеррана – имелись идеи насчет того, как на Земле получить свободные кварки. Они считали, что лучший способ – столкнуть лоб в лоб тяжелые ионы, такие как ядра свинца или золота, разогнав их предварительно в ускорителях частиц до высоких скоростей. При этом очень чувствительные детекторы смогли бы точно засечь момент, когда возникают свободные кварки, образующие плазму. Даже если бы кварки, перед тем как опять слипнуться в нуклоны, просуществовали в свободном состоянии долю секунды, мы могли бы получить представление о природе возможной материи внутри ядра нейтронной звезды.

Для этого Бейму и его коллегам понадобился ускоритель. К счастью, им помог в этом один неудачный и почти забытый проект.

Это было в 1982 году, и Бейм только что получил назначение в Консультационный комитет по ядерной физике – исполнительный орган, составляющий отчеты для министерства энергетики и Национального научного фонда Соединенных Штатов. Комитет обсуждал, какую установку в области ядерной физики следует профинансировать в первую очередь, а Бейм в это время возглавлял подкомитет по будущим исследованиям плотной материи. И в июле 1983 года “случилось чудо”, по крайней мере, с точки зрения Бейма.

С тех пор как ускоритель ISABELLE начал строиться, прошло уже больше десяти лет, и тут ученые из Брукхейвенской национальной лаборатории в Нью-Йорке поняли, что магниты для этого строящегося ускорителя протонов высоких энергий не способны производить нужное магнитное поле. (Название ISABELLE – аббревиатура Intersecting Storage Accelerator и belle, то есть “ускоритель на встречных пучках” плюс французское слово “красавица”. Кроме того, как рассказал мне Бейм, Isabelle — это название яхты, принадлежащей Джону Блюэтту, специалисту в области ускорителей из Брукхейвенской лаборатории.)

И тогда вместо завершения проекта ISABELLE ученые решили пролоббировать строительство более мощного ускорителя – Сверхпроводящего суперколлайдера (и этот проект закрыт в 1993 году). Поскольку в ЦЕРН в то время уже был запущен альтернативный проект Большого адронного коллайдера (LHC) на франко-швейцарской границе, ученые законсервировали проект ISABELLE, хотя на него уже потратили двести миллионов долларов14.

Для Бейма было очевидно, как нужно поступить в этой ситуации, и вместо презентации на тему предполагаемых исследований плотной материи, которую он собирался продемонстрировать, он представил свои предложения по поводу размещения в уже готовом тоннеле другого типа коллайдера, использующего тяжелые ионы. Все строительство, кроме установки магнитов, уже завершилось, и он с группой коллег предложил воспользоваться этой чудесной возможностью и все-таки построить ускоритель в Брукхейвене. Вот так он неожиданно начал обдумывать строительство ускорителя. Бейм находился в сильном возбуждении. Он рассказывал: “Я ходил и всем рассказывал, что RHIC (Relativistic Heavy Ion Collider, «релятивистский коллайдер тяжелых ионов») даст нам возможность понять природу материи, существовавшей в ранней Вселенной до того, как сформировались звезды и планеты, то есть кварковой материи. И еще я говорил, что RHIC расскажет многое о нейтронных звездах”. И в результате на свет появился релятивистский коллайдер тяжелых ионов.

Прошли годы, и оба ускорителя – RHIC и LHC – наконец построили. Результаты с LHC начали поступать только в 2000 году, в том же году на RHIC стали сталкивать первые пучки. На LHC сталкивались ионы свинца, и при их столкновениях были достигнуты рекордно высокие температуры в 5,5 триллиона градусов – почти в четыреста тысяч раз выше температуры в центре Солнца. А на коллайдере RHIC сталкивались друг с другом ионы золота. Когда в 2003 году Бейм узнал, что на RHIC получена кварк-глюонная плазма (LHC вскоре догнал в этом брукхейвенский ускоритель), он пришел в восторг. Позже он говорил: “В каком-то смысле мы всегда знали, что она должна была здесь образоваться”.

(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})

Представить себе эту совершенно новую материю, которую ученые смогли произвести, достаточно трудно. Попробуйте мысленно разделить секунду на 1023 кадров. Вещество, которое вы получили, то есть кварк-глюонная плазма, будет существовать в течение всего лишь одного кадра в количестве столь малом, что оно может поместиться внутри вируса, 10-23 секунды – это максимальное время, в течение которого кварки могут оставаться свободными. После этого они быстро слипаются обратно в протоны, нейтроны, мезоны и другие частицы.

Но есть одна проблема: температура в ядре нейтронной звезды намного ниже той, при которой происходят столкновения в коллайдерах RHIC и LHC, – близкой, наоборот, к температуре, существовавшей сразу после Большого взрыва. Бейм с самого начала знал, что ни на одном из этих коллайдеров никогда не получить таких температур, как в ядре нейтронной звезды, то есть гораздо более низких, необходимых для возникновения сверхтекучести. Он говорит: “Вы просто не сможете увидеть сверхтекучесть в экспериментах с тяжелыми ионами”. И продолжает, вздохнув:

“Температура – это огромная проблема”. И поэтому ученым остается только попытаться экстраполировать свои результаты на более низкие температуры. В каком-то смысле это похоже на то, как если бы вы изучали свойства пара, пытаясь вывести из них свойства льда. Но все же то, что мы видим в результате столкновений, имеет много общего с материей нейтронной звезды в момент образования ее из сверхновой, пока новорожденная нейтронная звезда еще не успела остыть. И эти столкновения могут помочь ученым понять, что случается, когда две нейтронные звезды сталкиваются, поскольку их остаток, образовавшийся после ужасающего взрыва, действительно невероятно горячий.

Вдобавок к LHC и RHIC сейчас в Дармштадте (Германия) строится новый ускоритель, названный FAIR (Facility for Antiproton and Ion Research), в котором предполагается создать кварк-глюонную плазму при той же температуре, что существует в ядре нейтронной звезды. Начиная с 2024 года[22] в экспериментах со сжатой барионной материей (СБМ) на этом ускорителе будут сталкивать ядра при высоких энергиях, прижимая их друг к другу, для того чтобы в очень маленьком объеме образовалась очень плотная материя – файербол, “огненный шар”. И этот файербол взорвется, а в результате взрыва появится около тысячи частиц, которые распадутся на электроны, позитроны и мюоны. Этот проект направлен на изучение мюонов, поскольку они не подвержены сильному взаимодействию, которое удерживает кварки вместе, и это может дать ключ к пониманию поведения ядерной материи при таких высоких плотностях, как в ядрах нейтронных звезд15.

Однако в настоящий момент самое большее, что мы можем сделать с данными по столкновениям тяжелых ионов, – это экстраполировать их на низкие температуры, но, естественно, такой экстраполяции недостаточно для того, чтобы получить все ограничения, которые накладываются на величины, входящие в уравнения состояния, и исключить нерелевантные модели. Для этого нам необходимо знать плотность и давление, а следовательно, массу и радиус нейтронной звезды. Один способ измерить массу – хронометрирование пульсара. Хронометрированием пульсаров занимаются астрономы на многих радиотелескопах по всему миру, но самый лучший инструмент последнего поколения для хронометрирования пульсаров расположен в удаленном уголке на северо-западе ЮАР. И следующая моя поездка состоялась именно туда.

1 ... 37 38 39 40 41 42 43 44 45 ... 79
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?