Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Научпоп » Истина в пределе. Анализ бесконечно малых - Антонио Дуран

Истина в пределе. Анализ бесконечно малых - Антонио Дуран

Читать онлайн Истина в пределе. Анализ бесконечно малых - Антонио Дуран
1 2 3 4 5 6 7 8 9 10 ... 32
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Бесконечность в Древней Греции

Мы начнем наш рассказ с экскурса в Древнюю Грецию. Именно тогда математики и философы предприняли первые попытки понять бесконечность — метафизическую основу математического анализа.

Для древних греков бесконечность была двухголовым монстром: с одной стороны — бесконечно малое, с другой — бесконечно большое. Бесконечность вскоре оказалась вовлечена в скандалы и споры. В некотором роде она проявилась в невозможности измерить одной мерой сторону квадрата и его диагональ, что разрушило пифагорейскую концепцию вселенной и привело к первому фундаментальному кризису в математике. Она также присутствовала в апориях Зенона о движении и множестве, в которых, помимо прочего, проявлялось диалектическое противоречие между различными философскими течениями той эпохи. Апории Зенона также показывают влияние этих противоречий на математику.

Эти события привели к тому, что использование бесконечности было запрещено, точнее ограничено. Поскольку отрицать бесконечные процессы было невозможно («И в малом ведь нет наименьшего, но везде есть меньшее, — писал Анаксагор, — но и в отношении к большему всегда есть большее»), Аристотель попытался запретить использование актуальной бесконечности: «Бесконечное не может существовать как сущность или как свойство», — пишет он в книге 3 «Физики». Однако далее сам же признает: «Много невозможного получается, если вообще отрицать существование бесконечного, — это тоже очевидно», «О бытии можно говорить либо в возможности, либо в действительности, а бесконечное получается либо прибавлением, либо отнятием», иными словами, «величина не может быть бесконечной актуально, об этом уже сказано, но она может быть беспредельно делимой». Например, по Аристотелю, отрезок нельзя рассматривать как бесконечное множество точек, выстроенных в линию, однако допускается деление отрезка пополам неограниченное число раз.

О роли бесконечности в математике Аристотель писал: «Наше рассуждение… не отнимает у математиков их исследования, ведь они теперь не нуждаются в таком бесконечном и не пользуются им; надо только, чтобы ограниченная линия была такой величины, как им [математикам] желательно».

Хотя с точки зрения математики важнее другое его высказывание: «Всякую конечную величину [всегда] можно исчерпать любой определенной величиной». Это так называемая аксиома Архимеда о непрерывности. В действительности эту аксиому впервые сформулировал и использовал Евдокс, ученик Платона. Этот принцип позволил Евдоксу преодолеть кризис, возникший после того, как были открыты несоизмеримые величины. Аксиома Архимеда позднее упоминается в «Началах» Евклида в виде определения: «Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга». На основе этой аксиомы Евдокс построил так называемый метод исчерпывания — строгий метод расчета площадей и объемов, который использовался, помимо прочего, для доказательства того, что площади кругов относятся как квадраты их диаметров. Это отношение мы называем числом π. Метод исчерпывания и, в частности, это утверждение позднее использовал Евклид в «Началах».

Архимед

Однако настоящим мастером метода исчерпывания, вне всяких сомнений, был Архимед. В нескольких трудах он изложил свою аксиому о непрерывности: «Если имеются две неравные площади, то, постоянно прибавляя к самому себе избыток, на который большая площадь превосходит меньшую, можно получить площадь, которая была бы больше любой заданной ограниченной площади», — писал он в «Квадратуре параболы». Однако он признавал, что не был первооткрывателем этого метода: «Этой леммой пользовались и жившие ранее геометры», — писал он, имея в виду Евдокса.

Архимед применял метод исчерпывания для решения многих задач. Мы уделим внимание одной из них, посвященной расчету площади спирали. Ученый рассматривал спираль, определение которой мы приводили в главе 1: эта спираль получается равномерным движением точки вдоль луча, который, в свою очередь, равномерно вращается вокруг своего начала. Архимед показал, что площадь первого витка спирали равна трети площади круга, радиус которого равен длине пути, пройденного точкой вдоль прямой во время первого витка. Чтобы доказать это, он построил фигуру несколько меньшей площади, состоявшую из п круговых секторов, полученных делением окружности на п равных частей, и другую фигуру большей площади, также состоявшую из n круговых секторов, в которую была вписана спираль, как показано на рисунке:

Эти приближенные вычисления аналогичны тем, что используются сегодня при расчете площадей кривых в полярных координатах с помощью интегралов, и абсолютно эквивалентны разбиению площади под графиком кривой на прямоугольники при определении на заданном интервале определенного интеграла функции.

Именно по этой причине Архимед считается одним из авторов первых, примитивных аналогов интегрального исчисления.

Однако существует и другая причина, по которой Архимед удостоился этого почетного звания. К сожалению, эта причина никак не повлияла на математиков последующих эпох. Речь идет об утерянном трактате Архимеда «Метод».

Эвристические рассуждения Архимеда, приводимые в этой книге, также предшествовали созданию интегрального исчисления. Похожие идеи появились в математике лишь спустя две тысячи лет после Архимеда, в XVII веке. Идея Архимеда противоречила аристотелеву отрицанию актуальной бесконечности.

Его революционная гипотеза состояла в том, что площадь рассматривалась как совокупность отрезков, а объем — как совокупность площадей. Так, прямоугольник представлялся как совокупность отрезков, параллельных его стороне, а цилиндр — как совокупность кругов, параллельных его основанию. Эти совокупности обязательно должны были быть бесконечными — здесь и появляется актуальная бесконечность, которую отрицал Аристотель.

ПАЛИМПСЕСТ АРХИМЕДА

В 1906 году датский эрудит Йохан Людвиг Гейберг обнаружил в Константинополе палимпсест — древнюю рукопись, где сохранились следы более ранней рукописи с трудами Архимеда. Поверх этого математического трактата был написан молитвенник для воскресных служб и других христианских праздников. Среди найденных работ была и ранее неизвестная — «Метод». Судя по особенностям почерка, рукопись относится примерно к 975 году н. э., а религиозные тексты, написанные поверх нее, датируются примерно 1229 годом.

ЗНАЧЕНИЕ БЕСКОНЕЧНОСТИ

Архимед также был первым греческим математиком, вычислившим сумму бесконечного числа слагаемых. Он рассматривал следующую сумму:

Ее требовалось рассчитать, чтобы определить площадь, ограниченную участком параболы. Несмотря на бесконечное число слагаемых (все они являются степенями 1/4), значение суммы конечно. Чтобы вычислить его, Архимед применил следующий прием: он умножил сумму на 1 - 1/4. Получим:

Теперь разделим результат на (1 - 1/4). Так как 1 - 1/4 = 3/4, при делении получим:

Тот факт, что сумма бесконечного числа слагаемых равна конечному числу, доказывает, почему Ахиллес в действительности сможет догнать черепаху в знаменитой апории Зенона: сумма бесконечного числа временных интервалов, каждый из которых равен половине предыдущего, является конечной.

* * * 

Как мы уже говорили, эта идея снова появилась в математике лишь в XVII веке, в работах Бонавентуры Кавальери, Грегуара де Сен-Венсана и других, о чем мы расскажем позднее. Этим математикам были известны труды Архимеда, которые были напечатаны примерно в середине XVI века, но не «Метод», поэтому они были вынуждены заново открыть этот прием, сыгравший основную роль в появлении исчисления.

Согласно хроникам, Архимед погиб от рук солдата при захвате Сиракуз римлянами в 212 году до н. э. На иллюстрации — мозаика, найденная на раскопках Помпеи.

От Архимеда до XVII века

Лишь в XVII веке математики овладели приемами, описанными в трудах Архимеда, что ускорило появление анализа бесконечно малых. Следует упомянуть, что до того ученые Средневековья и эпохи Возрождения совершили несколько открытий, без которых было бы невозможно появление математического анализа. Однако важнейшие из них не связаны напрямую с исчислением, поэтому мы расскажем о них лишь вкратце. Речь идет в первую очередь о потере и повторном обретении и освоении наследия древних греков. Ключевую роль также сыграло распространение по всей Европе индийской системы счисления. Этот длительный и непростой процесс начался в X веке, а позднее, в XIII—XVI веках, на севере Италии возникли школы абака — образовательные центры для тех, кто занимался торговлей.

1 2 3 4 5 6 7 8 9 10 ... 32
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈