Категории
Самые читаемые
ChitatKnigi.com » 🟢Разная литература » Прочее » 1. Современная наука о природе, законы механики - Ричард Фейнман

1. Современная наука о природе, законы механики - Ричард Фейнман

Читать онлайн 1. Современная наука о природе, законы механики - Ричард Фейнман
1 ... 35 36 37 38 39 40 41 42 43 ... 60
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Когда мы обсуждали законы Ньютона, то уже говорили о том, что они являются своего рода программой, которая призы­вает нас обратить особое внимание на силы. Но о самих силах Ньютон сказал только две вещи. Он полностью сформулировал закон для сил тяготения, но почти ничего не знал о более сложных силах, например о силах между атомами. Однако он открыл одно правило, одно общее свойство всех сил, которое составляет Третий закон. Таким образом, все, что Ньютон знал о природе сил,— это закон тяготения и общий принцип, кото­рый гласит:

Сила действия равна силе противодействия.

Означает это примерно следующее. Пусть имеются два ма­леньких тела, скажем две частицы, и пусть первая из них толка­ет вторую с некоторой силой. Тогда в соответствии с Третьим за­коном Ньютона вторая частица будет толкать первую с той же силой, но в противоположную сторону. Более того, эти силы бу­дут действовать вдоль одной и той же линии. Эта гипотеза, или, если хотите, закон, предложенный Ньютоном, выполняется с большой точностью, хотя, впрочем, он не абсолютно точен (с нарушениями его мы познакомимся позднее). Сейчас, однако, мы будем считать его совершенно точным. Разумеется, если есть еще третья частица, которая расположена не на той же линии, что две первые, то закон вовсе не означает, что сила, действующая на первую частицу, равна полной силе, дей­ствующей на вторую. Ведь эта третья частица может толкать две первые, в результате чего полная сила, действующая на первую частицу, будет направлена по-другому и, вообще го­воря, не будет ни равна, ни противоположна силе, действующей на вторую частицу. Однако полная сила, действующая на каж­дую из частиц, может быть разложена на две составляющие, которые представляют собой силы, действующие между каждой парой частиц. Эти компоненты силы для каждой пары частиц должны быть равны по величине и противоположны по направ­лению.

§ 2. Закон сохранения импульса

Давайте посмотрим, чем интересен Третий закон Ньютона. Предположим для простоты, что имеются только две взаимо­действующие частицы — частица 1 и частица 2, масса которых может быть различна. К какому следствию приводит равенство и противоположная направленность сил между ними? Согласно Второму закону, сила равна скорости изменения импульса со временем, так что скорость изменения импульса частицы 1 равна скорости изменения импульса частицы 2, т. е.

dp1/dt=dp2/dt (10.1)

Но если скорости изменения все время равны по величине и противоположны по направлению, то и полное изменение им­пульса частицы 1 равно и противоположно полному изменению импульса частицы 2. Это означает, что если мы сложим эти импульсы, то скорость изменения суммы под воздействием одних только взаимных сил (их обычно называют внутренними силами) будет равна нулю, т. е.

(dp1+dp2)/dt=0. . (10.2)

Напомним еще раз, что в нашей задаче мы предполагаем отсут­ствие каких-либо других сил, кроме внутренних. Но равенство нулю скорости изменения этой суммы означает просто, что величина (p1+p2) не изменяется с течением времени. (Эта величина записывается также в виде m1v1+m2v2и называется полным импульсом двух частиц.) Таким образом, мы получили, что при наличии одних только внутренних сил полный импульс двух частиц остается неизменным. Это утверждение выражает закон сохранения полного импульса в данном случае. Из него следует, что если мы измеряем или подсчитываем величину ni1v1+m2v2, т. е. сумму импульсов двух частиц, то для любых сил, действующих между ними, как бы сложны они ни были, мы должны получить одинаковый результат как до действия сил, так и после, т. е. полный импульс остается постоянным.

Рассмотрим теперь картину посложнее, когда есть три или большее число взаимодействующих частиц. Очевидно, что если существуют только внутренние силы, то полный импульс всех частиц остается постоянным, поскольку увеличение им­пульса одной частицы под воздействием другой частицы в точ­ности компенсируется уменьшением импульса этой второй частицы из-за противодействия первой, т. е. внутренние силы так сбалансированы, что полный импульс всех частиц изменить­ся не может. Таким образом, если нет сил, действующих на систему извне (внешних сил), то ничто не может изменить ее полный импульс и, следовательно, он остается постоянным.

Но нужно еще сказать о том, что произойдет, если будут еще существовать какие-то другие силы, кроме сил взаимо­действия между частицами. Предположим, что мы изолировали систему взаимодействующих частиц. Если имеются только взаимные силы, полный импульс, как и прежде, меняться не будет, сколь бы сложны ни были эти силы. Если, однако, существуют силы, обусловленные частицами вне этой изолиро­ванной группы, то, как мы докажем позднее, сумма всех этих внешних сил равна скорости изменения полного импульса всех внутренних частиц. Это очень полезная теорема.

Закон сохранения полного импульса некоторого числа взаимодействующих частиц в отсутствие внешних сил можно записать в виде

m1v1+m2v2 +m3v3+ ...=const, (10.3)

где miи vi — просто масса и скорость частицы соответствую­щего номера. Однако для каждой из этих частиц Второй закон Ньютона

f=(d/dt)(mv) (10.4)

пишется для любой составляющей полной силы и импульса в любом заданном направлении, так что x-компонента силы, действующей на частицу, равна скорости изменения x-компоненты импульса этой частицы

fx=(d/dt)(mvx). (10.5)

Точно такие же формулы можно написать для у- и z-компонент. Это означает, что уравнение (10.3) фактически представляет собой три уравнения: по одному на каждую из компонент.

Существует еще одно интересное следствие Второго закона Ньютона, кроме закона сохранения импульса. Доказательст­вом его мы будем заниматься позднее, а сейчас я просто рас­скажу вам о нем. Следствие или, скорее, принцип состоит в том, что законы физики не изменяются от того, стоим ли мы на месте или движемся равномерно и прямолинейно. Пусть, на­пример, на быстро летящем самолете ребенок играет с мячиком. Наблюдательный ребенок сразу заметит, что мячик прыгает точно так же, как и на земле. Иначе говоря, законы движения для ребенка в самолете (если только последний не меняет скорости) выглядят одинаково как на поле аэродрома, так и в полете. Этот факт известен под названием принципа относи­тельности. В том виде, в котором он рассматривается здесь, мы будем называть его «принципом относительности Галилея» или «галилеевской относительностью», чтобы не путать его с более тщательным анализом, проделанным Эйнштейном, но об этом несколько позже.

Таким образом, из закона Ньютона мы вывели закон со­хранения импульса, а теперь давайте посмотрим, какие спе­цифические законы описывают соударение и рассеяние частиц. Однако для разнообразия, а также чтобы продемонстрировать типичные рассуждения, которыми мы часто пользуемся в фи­зике в других случаях, когда, скажем, не известны законы Ньютона и должен быть принят иной метод рассмотрения, да­вайте обсудим законы рассеяния и соударения с совершенно другой точки зрения. Мы будем исходить из принципа относи­тельности Галилея и в конце рассуждений придем к закону сохранения импульса.

Итак, начнем с утверждения, что законы природы не изме­няются от того, что мы движемся прямолинейно с некоторой скоростью или стоим на месте. Однако прежде чем обсуждать процессы, в которых два тела сталкиваются и слипаются или разлетаются в стороны, давайте рассмотрим случай, когда эти два тела связаны между собой пружинкой или чем-то в этом роде, а затем вдруг освобождаются и разлетаются под дей­ствием этой пружинки или, быть может, небольшого взрыва в разные стороны. Кроме того, рассмотрим движение только в одном направлении. Предположим сперва, что эти два тела совершенно одинаковы и расположены симметрично. Когда между ними произойдет взрыв, одно из них полетит направо с некоторой скоростью v. Тогда естественно, что другое полетит налево с той же самой скоростью v, поскольку оба тела подобны и нет никаких причин считать, что левая сторона окажется предпочтительнее правой. Итак, с телами должно происходить нечто симметричное. Этот пример показывает, насколько по­лезны рассуждения такого рода в различных задачах. Но они не всегда столь ясны, когда затуманены формулами.

Таким образом, первый результат нашего эксперимента — одинаковые тела имеют одинаковую скорость. Но предположим теперь, что тела сделаны из различного материала, скажем один из меди, а другой из алюминия, но массы их равны. Мы будем предполагать, что если проделать наш опыт с двумя равными массами, то несмотря на то, что тела не одинаковы, скорости их тем не менее будут равны. В этом месте мне могут возразить: «Но ведь вы можете сделать и обратное. Вам незачем было это предполагать. Вы можете определить массы как рав­ные, если они в нашем эксперименте приобретают одинаковую скорость». Давайте же примем это предложение и устроим не­большой взрыв между кусочком меди и очень большим куском алюминия, который настолько тяжел, что едва может быть сдвинут с места, тогда как медь стремительно отлетает. Это го­ворит о том, что алюминия слишком много. Уменьшим его ко­личество и оставим лишь совсем маленький кусочек. Если устроить взрыв снова, то отлетит уже алюминий, а медь почти не сдвинется. Значит, сейчас слишком мало алюминия. Очевид­но, что должно существовать какое-то промежуточное количе­ство, которое можно постепенно подбирать, пока скорости раз­лета не станут равными. Теперь мы можем сказать, что раз равны скорости этих кусков, то массы их мы тоже будем считать равными (т. е. фактически мы переворачиваем сделанное ранее утверждение, что равные массы будут иметь одинаковую ско­рость). Самое интересное здесь то, что физический закон пре­вращается просто в определение. Но тем не менее какой-то физический закон здесь все же есть, и если мы примем такое определение равенства масс, то этот закон можно найти сле­дующим образом.

1 ... 35 36 37 38 39 40 41 42 43 ... 60
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?