Красота в квадрате - Алекс Беллос
Шрифт:
Интервал:
Закладка:
Фотография Натали Беллос
Цепная линия выполняет еще одну, менее известную функцию в архитектуре, которую вряд ли можно было бы применить в проектировании церквей и аэропортов. Бугристая дорожка в форме перевернутых цепных линий — прекрасная поверхность для плавной езды велосипеда с квадратными колесами или перекатывания кубов вместо шаров в боулинге.
Математик Стэн Вэген едет на своем трехколесном велосипеде в Колледже Макалестера (Сент-Пол, штат Миннесота)
© Стэн Вэген
Хотя семья Бернулли подарила миру больше знаменитых математиков, чем любое другое семейство за всю историю, величайший математик, родившийся в Базеле примерно в то же время, к ней не принадлежал. Леонард Эйлер (правильное произношение — «Ойлер»), сын местного пастора, был не по годам умным ребенком. Мальчик обладал математическим талантом, который открыл, а затем и воспитал его наставник Иоганн Бернулли. Когда в 1727 году Эйлеру исполнилось 19 лет, он переехал в Россию, чтобы занять должность в только что открывшейся Петербургской академии наук, где сын Иоганна Даниил возглавлял кафедру математики. Петр Великий предлагал королевское жалование, чтобы привлечь в Россию самые талантливые умы Европы. Кроме того, в Санкт-Петербурге была гораздо более интеллектуальная среда, чем в Базеле. Вскоре Эйлер стал одним из самых выдающихся петербургских ученых.
Леонард Эйлер был спокойным человеком и хорошим семьянином, что опровергало распространенное представление о гениальных математиках как о людях, испытывающих трудности в общении. Он имел поистине феноменальную память: говорят, он мог вспомнить все десять тысяч строк «Энеиды» Вергилия. Еще более феноменальной была его работоспособность. Ни один математик так и не смог сравниться с Эйлером по количеству научных работ; ученый писал в среднем по 800 страниц в год. Когда он умер в 1783 году, в возрасте 76 лет, на его рабочем столе осталось столько материалов, что его статьи публиковались в научных журналах еще полстолетия. У Эйлера всегда было плохое зрение; к тридцати годам он перестал видеть левым глазом, а к шестидесяти — правым. Некоторые самые важные труды Эйлер диктовал, уже будучи слепым, целой группе секретарей, пытавшихся изо всех сил за ним поспевать. По их словам, Эйлер творил математику быстрее, чем это можно было записывать.
Однако Эйлера на фоне других математиков выделяет не только количество, но еще и качество, и разнообразие исследований. «Читайте, читайте Эйлера, — призывал французский математик Пьер-Симон Лаплас. — Он — наш общий учитель». Эйлер внес значительный вклад практически во все области науки того времени, от теории чисел до механики, от геометрии до теории вероятностей. Кроме того, он открыл и совершенно новые области. Работы Эйлера оказались настолько преобразующими, что его словарь символов был принят в математическом сообществе. Например, именно благодаря Эйлеру мы используем символы π и e для обозначения констант окружности и экспоненциального роста. Он не первым применил символ π (это сделал малоизвестный валлийский математик Уильям Джонс), но этот символ получил широкое распространение как раз благодаря Эйлеру. А вот что касается использования символа e в качестве экспоненциальной константы, то здесь пальма первенства принадлежит Эйлеру: он применил его в труде, посвященном баллистике пушечных ядер. Считается, что он выбрал букву «e», поскольку она оказалась первой из еще неиспользованных (в математических текстах уже было много обозначений a, b, c, d), а не потому, что с нее начиналось слово «экспоненциальный» или его фамилия. Несмотря на все свои достижения, Эйлер оставался скромным человеком.
Эйлер сделал одно неожиданное открытие в отношении числа e, но мы к нему вернемся после того, как я расскажу вам о новом символе — восклицательном знаке (не принадлежащем к числу изобретений Эйлера). Когда сразу же после целого числа пишется знак «!», это означает, что данное число необходимо умножить на все целые числа, которые меньше него. Операция «!» называется факториалом, а число n! читается как «n-факториал».
Факториалы начинаются так:
(0! = 1 по соглашению)
1! = 1
2! = 2 × 1 = 2
3! = 3 × 2 × 1 = 6
4! = 4 × 3 × 2 × 1 = 24
…
10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3 628 800
…
Факториалы растут очень быстро. К тому времени, когда мы получим 20!, значение будет исчисляться квинтиллионами. Возможно, немецкие математики XIX века решили использовать для этой операции восклицательный знак потому, что именно так хотели продемонстрировать феноменальную скорость роста факториала. В некоторых английских текстах того времени предлагалось даже обозначать n! как «n-изумление», а не «n-факториал». Безусловно, восходящая траектория восклицательного знака действительно способна вызывать сплошное изумление: факториал опережает даже экспоненциальный рост.
Факториалы чаще всего применяются в процессе расчета комбинаций и перестановок. Например, сколько существует способов рассадить определенное количество людей на таком же количестве стульев? Разумеется, один человек может сесть на одном стуле только одним способом. Когда есть два человека и два стула, появляется два варианта выбора, две перестановки — AB и BA. В случае трех человек и трех стульев таких способов уже шесть: ABC, ACB, BAC, BCA, CAB и CBA. Однако вместо перечисления всех возможных перестановок можно использовать общий метод поиска результата. У первого человека есть три варианта выбора стульев, у второго — два, у третьего — один; следовательно, общее количество вариантов равно 3 × 2 × 1 = 6. Применив этот же метод к четырем людям и четырем стульям, мы найдем общее число вариантов так: 4 × 3 × 2 × 1 = 4! = 24. Другими словами, при наличии n людей и n стульев количество перестановок составляет n! Поражает то, что если вы устроите ужин для десяти человек, вы сможете рассадить их за столом более чем тремя с половиной миллионами способов.
Но давайте вернемся к числу e. Эту экспоненциальную константу можно записать с помощью целой кучи восклицательных знаков. Боже мой!!! Вот это да!!! Оказывается, если вычислить значение ! для каждого числа, начиная с 0, а затем подсчитать сумму всех членов этого ряда, то в результате получится число e.
В виде равенства это можно записать так:
Что эквивалентно следующему:
Начнем подсчитывать сумму член за членом:
1
2
2,5
2,6666…
2,7083…
2,7166…
Этот ряд приближается к истинному значению числа e со сверхзвуковой скоростью. Всего после десяти членов ряда значения совпадают с точностью до шести десятичных знаков, что весьма неплохо практически для всех научных целей.
Почему число e так красиво выражается в виде факториалов? Как мы видели в случае со сложным процентом, оно представляет собой предел (1 + )n, когда n приближается к бесконечности. Я избавлю вас от деталей доказательства, но выражение (1 + )n можно записать в виде огромной суммы дробей с единицей в числителе и факториалом в знаменателе.
Эйлер был большим поклонником занимательной математики и с интересом изучал математические игры и головоломки. Например, когда один любитель шахмат спросил, может ли конь пересечь доску так, чтобы попасть на каждую клетку только один раз, прежде чем вернуться в исходную позицию, Эйлер отыскал способ, как это сделать, что избавило от решения подобных вопросов до настоящего времени. Внимание Эйлера привлекала также французская карточная игра jeu de rencontre — игра в совпадения (разновидность одной из моих любимых детских игр под названием Snap!).
Суть игры в совпадения состоит в том, что два игрока (А и Б) тасуют каждый свою колоду карт, а затем одновременно переворачивают первую карту в своих колодах и продолжают делать это до тех пор, пока не закончатся карты. Если в ходе переворачиваний появляются одинаковые карты, выигрывает игрок А. (И я кричу: «Snap!») Если совпадений до самого конца нет, побеждает игрок Б. Эйлера интересовала вероятность того, что победителем окажется игрок А, другими словами, что за 52 раза встретится хотя бы одно совпадение.
За долгие годы этот вопрос возникал неоднократно, хотя и в разных ситуациях. Например, представьте себе, что гардеробщик не выдает номерки на те вещи, которые люди сдают в гардероб в течение вечера. Какова вероятность того, что хотя бы один человек получит свое пальто назад? Или возьмем такой пример. Кинотеатр продает билеты с указанием мест, но затем публике разрешают занимать любое свободное место. Если зал кинотеатра заполнен, какова вероятность того, что хотя бы одно место займет человек, на билете которого указан номер этого места?