Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Математика » Пятьсот двадцать головоломок - Генри Дьюдени

Пятьсот двадцать головоломок - Генри Дьюдени

Читать онлайн Пятьсот двадцать головоломок - Генри Дьюдени
1 ... 29 30 31 32 33 34 35 36 37 ... 62
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

что нелепо.

Как можно объяснить этот парадокс?

Мы стоим с ребенком перед большим зеркалом, которое отражает нас целиком.

— Почему так происходит, — спрашивает смышленый юнец, — что когда я гляжусь в зеркало, то правая и левая стороны меняются местами, а верх и низ — нет? Если зеркало меняет стороны в горизонтальном направлении, то почему же оно не меняет их в вертикальном? Почему я не вижу себя стоящим на голове?

511. Монета и дырка. На рисунке схематически изображена (в увеличенном виде) монета достоинством 1 коп. У нас есть небольшой листок плотной бумаги, в котором проделана круглая дыра размером как раз в эту монету. (Ее можно проделать, обведя ободок монеты острой бритвой.) Какую наибольшую монету я могу просунуть сквозь эту дырку, не разорвав бумаги?

512. Головоломка с високосным годом. В феврале 1928 г. было 5 сред. Конечно, в этом нет ничего особенно примечательного, однако было бы интересно найти ближайший гол, предшествовавший 1928 г., и ближайший год, следующий за 1928 г., у которых в феврале было бы по 5 сред.

513. Задуйте свечу. Однажды туманным утром за завтраком у полковника Крэкхэма зажгли свечу. Когда туман рассеялся, полковник свернул из листа бумаги похожую на мегафон воронку и предложил своим юным друзьям задуть с ее помощью свечу. Как они ни старались, ничего у них не выходило до тех пор, пока он не объяснил им, в чем дело. Разумеется, вы должны дуть через меньший конец (см. рисунок).

514. Освободите палочку. Вот одна головоломка, которая приведет в сильное замешательство ваших друзей, хотя она не так широко известна, как того заслуживает, Я полагаю, что ее придумал Сэм Лойд, выдающийся американский знаток шахмат и головоломок. Во всяком случае, он первый показал ее нам более четверти века назад.

У нас имеется веревочная петля, продетая сквозь один из концов палочки, как показано на рисунке, однако слишком короткая для того, чтобы ее можно было перекинуть через противоположный конец. Головоломка состоит в том, чтобы подвесить палочку к петле пиджака (см. рисунок), а затем снова освободить.

515. Ключи и кольцо. Однажды полковник Крэкхэм сделал из толстого картона кольцо с двумя ключами, как показано на рисунке, нигде ничего не разорвав и не склеив. Быть может, это озадачит читателя больше, чем Джорджа, который проворно вырезал такие же ключи с кольцом.

516. Запутанные ножницы. Вот одна старая головоломка, которую многие читатели, забывшие, как надевается веревка, будут рады увидеть вновь. Если вы начнете с нижней петли (см. рисунок), то сумеете легко надеть веревку так, как нужно. Головоломка, разумеется, состоит в том, чтобы, дав кому-нибудь подержать свободные концы, освободить ножницы. Чтобы вам было легче манипулировать, возьмите веревку подлиннее. Мы посоветовали бы также взять ножницы побольше, а веревку потолще, чтобы она лучше скользила.

517. Психологические тесты. В наше время повсюду в школах ученикам предлагают «психологические тесты». Вот один из них.

Английский офицер, вернувшийся после боксерского восстания из Китая, заснул в церкви во время службы. Ему приснилось, что к нему приближается палач, дабы отрубить голову, и в тот самый момент, как сабля опускалась на шею несчастного офицера, его жена, желая разбудить заснувшего, слегка дотронулась до его шеи веером. Потрясение было столь велико, что офицер тут же упал замертво. В этой истории что-то неладно.

Что же именно?

Еще один хороший вопрос для школьника, знакомого с математикой, звучит так.

Если бы мы продавали яблоки кубическими сантиметрами, то как бы мы смогли узнать, сколько кубических сантиметров содержится, скажем, в дюжине дюжин яблок?

518. На вершине горы. Профессор Рэкбрейн рассказал за завтраком, что когда он был в Италии, то участвовал в восхождении на вершину горы, где его внимание обратили на то обстоятельство, что кружка вмещает на вершине горы жидкости меньше, чем у подножия.

— Не могли бы вы сказать, — спросил профессор, — что это была за гора с таким странным свойством?

519. Арифметика Купидона. Однажды утром Дора Крэкхэм показала присутствующим листок бумаги с мешаниной цифр и знаков на нем, изображенный на рисунке. Она утверждала, что невеста одного из молодых математиков преподнесла такой листок своему суженому, когда была в игривом настроении.

— Что я должен с ним сделать? — спросил Джордж.

— Просто отгадай, что на нем написано, — ответила Дора. — Если на него посмотреть должным образом, то расшифровать надпись будет нетрудно.

520. Танграмы. Читателям, быть может, будет приятно получить коллекцию поразительно реалистичных фигур и картинок, которые представляют собой комбинации из удивительных кусочков — танграмов. Вы видите квадрат, разрезанный на 7 кусков. Если вы отметите точку В посредине между А и С на стороне произвольного квадрата, a D посредине между С и Е на прилежащей стороне, то направление разрезов станет очевидным. В случаях, приведенных на помещенных здесь рисунках, использовано два полных комплекта по 7 кусочков в каждом.

В случае 2 изображен велосипедист, 3 представляет собой человека, толкающего тачку, 4 — мальчика на ослике, 5 — машину, 6 — дом, 7 — собаку, 8 — лошадь, 9 — британского льва.

Как нетрудно заметить, возможности таких двух комплектов безграничны, и с их помощью удается с успехом изобразить много интересных предметов.

Ответы

1. Чек был выписан на сумму 31 доллар 63 цента. Человек получил 63 доллара 31 цент. После утери пятицентовой монетки осталось 63 доллара 26 центов, что в два раза превышает сумму, указанную в чеке.

2. Когда человек вошел в магазин, у него было с собой 99 долларов 98 центов.

3. Наибольшая сумма равна 1 доллару 19 центам и составлена из одной монеты в полдоллара, одной монеты в четверть доллара, четырех монет по 10 центов и четырех монет по 1 центу.

4. Сначала просителей было 20 человек и каждый получил по 6 долларов. Пятнадцать человек (на 5 человек меньше) получили бы по 8 долларов каждый. Но их стало 24 (возросло на четыре человека), и каждый получил только по 5 долларов. Сумма еженедельного пожертвования составляет, таким образом, 120 долларов.

5. Группа детей состояла из трех мальчиков и трех девочек. Каждый ребенок получил по две булочки третьего сорта и по одной булочке второго сорта, общая стоимость всех булочек и составляет 7 центов.

6. Вилли-Лежебока проработал 16⅔ дня и прогулял 13⅛ дня. Сумма, которую он получил за проработанное время (из расчета 8 долларов в день), точно совпадает с той суммой, которую он выплатил за прогулы (из расчета 10 долларов в день).

7. Десять мешков должны содержать соответственно 1, 2, 4, 8, 16, 32, 64, 128, 256 и 489 однодолларовых купюр. Первые девять чисел составляют геометрическую прогрессию. Если сумму этой прогрессии вычесть из 1000, то получится содержимое десятого мешка.

8. У игроков А, В, С, D, E, F и G перед началом игры было соответственно 4 доллара 49 центов, 2 доллара 25 центов, 1 доллар 13 центов, 57 центов, 29 центов, 15 центов и 8 центов. Ответ можно получить, двигаясь от конца задачи к началу, однако более простой способ таков: 7 + 1 = 8; 2 × 7 + 1 = 15; 4 × 7 + 1 = 29 и т. д. (первые сомножители представляют собой последовательные степени двойки, то есть числа 2, 4, 8, 16, 32 и 64).

9. Абрахам (А) должен получить треть всей суммы, а Бенджамин (Б) — две трети. Пусть, например, Б может выкопать канаву за 2 ч и выбросить весь грунт за 4 ч. Тогда А выкапывает канаву за 4 ч и выбрасывает весь грунт за 8 ч. Следовательно, при рытье канавы их силы относятся, как 2 к 4, а при выбрасывании грунта — как 4 к 8 (то есть отношение сил остается неизменным). При этом А может выкопать канаву за то же время, за которое Б может выбросить весь грунт (4 ч), а Б может выкопать канаву за четвертую часть того времени, которое А тратит на выбрасывание грунта. Любые другие конкретные числа, удовлетворяющие условиям задачи, приведут к двум аналогичным отношениям сил обоих землекопов. Следовательно, Абрахаму причитается треть всей суммы, а Бенджамину — в два раза больше, то есть две трети.

10. Кэтрин, Джейн и Мери получили соответственно 122, 132 и 142 доллара, что как раз вместе и составляет общую сумму их доли наследства 396 долларов. По условию задачи Джон Смит получает столько же, сколько и его жена Кэтрин (122 доллара), Генри Снукс — в полтора раза больше своей жены Джейн (198 долларов), а Том Кроу — в два раза больше своей жены Мери (284 доллара), поэтому общая сумма наследства равна 1000 долларов. Следовательно, имена жен указаны верно.

1 ... 29 30 31 32 33 34 35 36 37 ... 62
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?