Интернет-журнал 'Домашняя лаборатория', 2007 №8 - Журнал «Домашняя лаборатория»
Шрифт:
Интервал:
Закладка:
Помехи от электростатических разрядов, в основном — помехи возникающие при касании "наэлектризованным" человеком различных электрических цепей. В зарубежной литературе этот вид помех называется ESD — Electrostatic Discharge Помехи, вызванные работой близкорасположенных радиопередатчиков
Помехи от мощных природных или искуственных источников энергии, прежде всего — от грозовых разрядов.
Существуют российские и международные стандарты, оговаривающие требования к электромагнитной совместимости (ЭМС). Стандарты аккумулируют многолетний инженерный опыт. Однако сами по себе стандарты являются тяжело усваиваемым материалом, малопригодным для непосредственного руководства при проектировании или анализе поведения устройств. Стандарты разработаны таким образом, чтобы при испытании устройств достаточно аккуратно имитировать реальные помехи.
Целесообразно все помехи разделить на три абстрактных типа:
НП: Наносекундные помехи
МП: Мощные помехи
РП: Радиочастотные помехи
Практически все реальные помехи могут быть представлены как комбинации этих трех абстрактных. Например, EFT помехи — это пачки наносекундных помех НП, a eESD — это комбинация одиночной НП и одиночной МП. Поэтому, если устройство устойчиво ко всем трем абстрактным типам помех, то с высокой степенью вероятности оно будет устойчиво и к реальным помехам, независимо от их происхождения.
Вопрос устойчивости к МП в большой степени является вопросом обеспечения надежности, пожаробезопасности и электробезопасности. Вопросы обеспечения устойчивости к МП и РП в данной статье не рассматриваются.
Наносекундные помехи
Этот тип помех является причиной большинства сбоев. При всем своем разнообразии, наносекундные помехи обладают некоторыми общими свойствами:
Одиночная НП — это почти дельта-функция, у нее черезвычайно широкий спектр, до гигагерц. НП имеет ничтожную энергию, в отличие от МП она как правило не "выжигает" радиоэлектронные устройства, а вызывает обратимый сбой
Сбоить могут только устройства, обладающие памятью, такие как микропроцессоры, счетчики, и пр. Для чисто комбинационных цифровых схем понятие "сбой" теряет смысл, т. к. они автоматически возвращаются в нужное состояние по окончании НП. Заметим, что аналоговые схемы тоже могут обладать "памятью" в виде емкостей или индуктивностей.
Чтобы лучше представить себе этот тип помех, полезно обратиться к стандарту МЭК 61000-4-4 (ГОСТ Р 51317.4.4-99). В нем сказано, что EFT помехи должны имитироваться пачками треугольных импульсов. Длительность переднего фронта у каждого импульса 5 не, длительность импульса 50 нс на уровне 50 %. Внутреннее сопротивление генератора импульсов 50 Ом, генератор должен быть заземлен.
Амплитуда НП-импульсов зависит от того, к какому классу по помехоустойчивости должно относиться испытуемое устройство, а также от того, куда подаются импульсы при испытании, см. табл 1. Возможны испытания и более жесткие, чем указанные в таблице, если это требуется по условиям эксплуатации прибора. Однако в подавляющем большинстве случаев перечисленных в таблице степеней жесткости достаточно. Самые легкие испытания применяются к бытовой технике, самые жесткие — к промышленным и бортовым устройствам.
В линии питания и заземления тестовые НП импульсы инжектируются непосредственно, без развязки. С учетом достаточно низкого сопротивления генератора сигналов, величины импульсных токов, протекающих в цепях земли, могут достигать огромных величин. Импульсные токи НП, протекающие по земляным цепям устройства, создают заметные падения напряжений между различными земляными точками, это может вызвать сбой.
В сигнальные цепи тестовые НП импульсы инжектируются через "емкостные клещи", куда по очереди закладываются все провода, приходящие к устройству. Емкость связи невелика, единицы пикофарад, но для НП импульсов даже сравнительно малые емкости не являются серьезным препятствием, настолько широк их спектр. НП, приходящая в устройство с сигнальных цепей, рано или поздно или поздно попадает на землю устройства и далее проходит теми же путями, как и НП, инжектированная в цепь заземления. Поскольку, согласно стандарту, амплитуда сигнальной НП вдвое меньше чем земляной, попавшая на землю сигнальная НП в дальнейшем уже не может вызвать эффекта худшего, чем земляная НП. Однако до того как сигнальная НП попадет на землю, она может вызвать сбой непосредственно в цепях, связанных с данным сигналом.
Стандарт оговаривает, что испытуемое устройство должно находиться на изолирующей подставке на расстоянии 100 мм от сплошной заземленной поверхности. Это немаловажное требование, т. к. между устройством и землей образуется емкостная связь, иногда одного этого достаточно для сбоя.
На фиг.1 условно показано некое устройство, состоящее из узлов 1…4. Узлы 1 и не подключены ко внешним цепям, но они могут сбиваться из-за "перекосов" внутренней земли, вызванными прохождением тока помехи Ignd (на фиг.1 показана помеха инжектируемая в линии заземления). Узлы 3 и 4 подключены к внешним устройствам, поэтому, помимо сбоев из-за "перекосов" земли, дополнительно они подверженны сбоям из-за помеховых токов I1 и I2, проходящих через их терминалы.
Два типа проверок, оговоренных стандартом (со стороны земли и со стороны сигналов), взаимодополняют друг друга.
Оговоренные стандартом проверки, а также фиг.1, позволяют выделить три составляющих помехоустойчивости устройства к НП, рассматриваемые далее более подробно:
— Внутренняя земля устройства
— Барьеры
— Емкостные связи
Внутренняя земля устройства
Как уже упоминалось, в момент прохождения НП по внутренней земле устройства создается заметная разность потенциалов между различными точками земли ("перекосы"). Например, если узлы 1 и 2 (см фиг.1) являются цифровыми узлами, собранными на ТТЛШ логике, то разность напряжений примерно в 1 В между точками "а" и "б" способна вызвать сбой.
Основную роль в создании падений напряжений играет не резистивная, а индуктивная составляющая цепей заземления. За счет огромной крутизны передних фронтов НП, даже мизерных индуктивностей земляных полигонов или земляных слоев в печатных платах бывает достаточно для сбоя.
Рассмотрим эквивалентную схему фиг.2.
Источник помехи — генератор треугольных импульсов Vgen. Фронт нарастания помехи 5 нс, длительность по уровню 50 % равна 50 нс (см. эпюру напряжения на фиг.2), сопротивление источника помехи Rgen равно 50 Ом, как оговорено стандартом. Амплитуда помехового импульса 1 кВ, что соответствует сравнительно "мягким" испытаниям согласно табл.1.
Конденсатор Ccp1 представляет собой емкость связи, a Lw — индуктивность проводов, подключенных к устройству. Для схемы фиг.1 емкость связи Ccp1 состоит из параллельно включенных Cx1, Сх2 плюс, возможно, емкостей, привносимых внешними устройствами.
Индуктивность Lw представляет суммарную индуктивность всех проводников на пути помехи, за исключением индуктивности земли на рассматриваемом участке (в нашем случае — на участке "а"-"б" фиг.1), которая обозначена как Lgnd. Предположим, что индуктивность земли Lgnd равна 10 нГ, а индуктивность остальных цепей — 100 нГ.
Для ориентировки, печатный проводник шириной 5 мм и диной 10 мм имеет индуктивность более мГ; проводник шириной 0.35 мм и длиной 10 мм — примерно 17 мГ. Квадратный