Категории
Самые читаемые
ChitatKnigi.com » 🟢Документальные книги » Публицистика » Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - Нейт Сильвер

Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - Нейт Сильвер

Читать онлайн Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - Нейт Сильвер
1 ... 27 28 29 30 31 32 33 34 35 ... 143
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Учитывая, что в настоящее время мы прекрасно информированы обо всех условиях («положение всех элементов, из которых состоит природа») и хорошо знаем законы, управляющие Вселенной («все силы, приводящие природу в движение»), у нас появляется возможность делать идеальные предсказания («будущее, как и прошлое, оказывается прямо перед нашими глазами, подобно настоящему»). Движение каждой частицы во Вселенной может казаться нам столь же предсказуемым, как движение шаров на бильярдном столе. Возможно, полагал Лаплас, подобная задача окажется людям не под силу. Однако если бы мы были достаточно умны (и если бы имели необходимое количество мощных компьютеров), то мы могли бы предсказывать погоду и многие другие события – и обнаружить в конце концов, что природа совершенна.

Идея Демона Лапласа казалась противоречивой на протяжении всего своего двухсотлетнего существования.

Против точки зрения детерминистов выступали сторонники вероятностного подхода, верившие, что условия Вселенной познаваемы лишь с некоей долей неопределенности[65]. Подобный пробабилизм представлял собой поначалу исключительно эпистемологическую парадигму – согласно ей существуют ограничения на взаимодействия человека и природы. Совсем недавно, благодаря открытиям в области квантовой механики, ученые и философы задались вопросом, а не ведет ли себя сама Вселенная вероятностным образом.

При ближайшем рассмотрении частицы, которые стремился выявить Лаплас, начинают вести себя подобно волнам: возникает впечатление, что они не занимают никакого постоянного положения. Как можно предсказать, в каком направлении будет двигаться объект, если вы даже не знаете, где именно он находится? Разумеется, это невозможно. И именно эта мысль и заложена в основу знаменитого принципа неопределенности, разработанного физиком-теоретиком Вернером Гейзенбергом{250}. Физики трактуют принцип неопределенности по-разному, однако он, по сути, утверждает, что постулат Лапласа не может быть верен в буквальном смысле. Идеальные предсказания невозможны, если природа сама по себе развивается случайным образом.

К счастью, для изучения погоды нам не нужна квантовая механика. Погодные изменения происходят на молекулярном (а не атомном) уровне, и сами молекулы слишком велики для того, чтобы на них оказывала какое-то значимое влияние квантовая физика. Более того, мы уже довольно давно поняли, что изменения погоды вполне подчиняются законам химии и ньютоновской физики.

А что касается обновленной версии Демона Лапласа, то можно сказать следующее. Если мы знаем положение каждой молекулы в земной атмосфере (такое утверждение куда более скромное, чем стремление к знанию местоположения каждого атома во Вселенной), то можем ли мы создавать идеальные прогнозы погоды? Или же в погоде тоже изначально заложен некий элемент случайности?

Матрица

Мы уже давно умеем делать прогнозы погоды на основе чисто статистических наблюдений. Насколько велика вероятность того, что завтра пойдет дождь, с учетом того, что он шел сегодня? Метеоролог мог бы изучить все такие случаи, связанные с дождями, собранные в его базе данных, и дать ответ на этот вопрос. Или же он мог бы изучить долгосрочные средние значения и сказать нам о том, что в марте в Лондоне дождь идет примерно 35 % времени{251}.

Проблема состоит в том, что предсказания такого рода не особенно полезны – они недостаточно точны для того, чтобы порекомендовать вам взять с собой с утра зонтик, не говоря уже о прогнозировании движения урагана. Поэтому метеорологи пошли по иному пути. Вместо статистической модели они хотели создать живую и дышащую модель, имитирующую физические процессы, которые управляют погодой.

Однако наша способность делать прогнозы погоды на основе расчетов куда слабее, чем наше теоретическое понимание. Мы знаем, какие уравнения надо решить, и примерно представляем себе верные ответы, однако нам недостаточно быстродействия для того, чтобы произвести расчеты для каждой молекулы в земной атмосфере. Вместо этого нам приходится заниматься аппроксимацией.

Самый интуитивно понятный метод для этого случая – упрощение проблемы за счет разбиения атмосферы на конечное количество наборов пикселей – метеорологи часто называют такую систему матрицей, решеткой или сеткой. По данным Лофта, первые заслуживающие внимания попытки работы в этом направлении были сделаны в 1916 г. Льюисом Фраем Ричардсоном, знаменитым британским физиком. Ричардсон хотел определить погоду над Северной Германией в определенное время – в 13 ч 20 мая 1910 г. Строго говоря, это нельзя назвать предсказанием, поскольку этот день уже прошел. Однако в распоряжении Ричардсона имелось много данных – о температуре, атмосферном давлении и скорости ветра, – собранных германским правительством. И у него было достаточно времени, поскольку он служил медиком-добровольцем и оставался без дел в перерывах между артиллерийскими канонадами. Поэтому Ричардсон разбил территорию Германии на ряд двумерных секторов размерами по три градуса широты (около 340 км) на три градуса долготы (рис. 4.1). Затем он приступил к работе, пытаясь решить химические уравнения, определявшие погоду в каждом секторе, и то, каким образом они влияют на погоду в соседних.

К сожалению, эксперимент Ричардсона бесславное провалился{252} – он «предсказал» серьезный рост атмосферного давления, в реальности же в тот день это не наблюдалось. Однако Ричардсон тем не менее опубликовал свои результаты. Этот метод определенно казался правильным методом предсказания погоды – Ричардсон считал, что следует не полагаться на грубые статистические приближения, а выявить некие основные принципы и воспользоваться глубоким теоретическим пониманием поведения системы.

Рис. 4.1. Матрица Ричардсона – прообраз современной системы прогнозирования погоды

Проблема состояла в том, что метод Ричардсона требовал выполнения огромного объема работы. Для решения поставленных им задач были нужны компьютеры. Как вы увидите в главе 9, компьютеры не каждую из поставленных им задач могут выполнить и далеко не всегда служат панацеей в процессе предсказания. Однако компьютеры идеальны с точки зрения вычислений – то есть быстрого и точного многократного повторения одних и тех же арифметических задач. Они отлично подходят для решения шахматных задач, подчиняющихся довольно простым правилам, но сложных с точки зрения вычислений. Сходные задачи имеются и в области метеорологии.

Первый компьютерный прогноз погоды создал в 1950 г. математик Джон фон Нейман, который использовал для этого машину, способную осуществлять порядка 5000 вычислений в секунду{253}. Расчет происходил намного быстрее, чем мог сделать Ричардсон с карандашом и листом бумаги на французском деревенском поле. Тем не менее прогноз оказался неудачным, и его результаты оказались не намного точнее обычной случайной догадки.

Со временем, к середине 1960‑х гг., компьютеры начали демонстрировать определенные навыки в прогнозировании погоды. Так, Bluefire, выдающий результаты примерно в 15 миллиардов раз быстрее, чем первый компьютерный прогноз (и, возможно, в квадрильон раз быстрее, чем Ричардсон), дает нам куда более осмысленные результаты благодаря скорости вычислений.

Прогнозы погоды в наши дни значительно чаще бывают верными, чем 15 или 20 лет назад. Однако, если скорость вычислений в последние десятилетия увеличивалась по экспоненте, прогресс в точности прогнозов погоды был хотя и стабильным, но медленным.

Можно назвать две основные причины сложившейся ситуации. Первая связана с тем, что мир имеет не одно и не два измерения. Самый надежный способ повысить правильность прогноза погоды – то есть на один шаг приблизиться к пониманию поведения каждой молекулы – состоит в уменьшении размера сетки, используемой для отображения атмосферы. Сектора Ричардсона имели размер 340 на 340 км, обеспечивая в лучшем случае слишком масштабный взгляд на планету (в квадрат 340 на 340 км² можно почти полностью вместить Нью-Йорк и Бостон – города, в которых может быть совершенно разная погода). Предположим, вы хотите в два раза уменьшить площадь секторов, до 170 на 170 км. Благодаря этому ваш прогноз станет более точным, но при этом увеличится количество уравнений, которые вам надо решить. В реальности количество уравнений вырастет не в два, а в четыре раза, поскольку вы уменьшаете масштаб и по длине, и по ширине. Иными словами, для того чтобы решить такую задачу, вам нужно примерно в 4 раза увеличить вычислительную мощность.

1 ... 27 28 29 30 31 32 33 34 35 ... 143
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈