Интернет-журнал 'Домашняя лаборатория', 2007 №8 - Журнал «Домашняя лаборатория»
Шрифт:
Интервал:
Закладка:
Технология, которой следовали большинство производителей, заключается в создании отдельного интерфейса для входов и выходов, т. е. драйверы входов и выходов работают при напряжении питания 3.3 В, оставшаяся часть микросхемы — при напряжении 2.5 В, таким образом устройство может быть ТТЛ-совместимым и отвечать требованиям для порогов VOH и VOL. Внешнее питание 3.3 В требуется для того, чтобы ИС была устойчива к напряжению 3.3 В. Это приводит к дополнительному усложнению, связанному с наличием двух напряжений питания для чипа, но в перспективе дополнительное напряжение питания будет генерироваться в самой микросхеме.
Более гибкая технология (использованная в DSP серии ADSP-218xM) заключается в обеспечении отдельного интерфейса входов/выходов с отдельным внешним напряжением питания, с возможностью установить это напряжение равным рабочему напряжению ядра процессора, если это необходимо. Такая схема обеспечивает устойчивость к напряжению 3.3 В, если внешнее напряжение составляет 2.5 В; или устойчивость к напряжению 3.3 В и совместимость к 3.3-вольтовым устройствам, если внешнее напряжение равно 3.3 В.
Существуют разработки, в которых используется эта технология частично, например, устройства VCX являются устойчивыми к 3.3 В при напряжении ядра и напряжении интерфейса входов/выходов равном 2.5 В, но они не обладают совместимостью с 3.3-вольтовыми устройствами. Другие существующие проекты и патенты в этой области не поддерживают полностью устойчивость и совместимость и требования по низкому потреблению тока при работе в режиме ожидания.
Существует несколько важных аспектов при разработке устройств с двумя напряжениями питания:
1. Последовательность включения питания: Если требуется два источника питания для обеспечения дополнительной устойчивости/совместимости, то какой должна быть последовательность включения питания? Необходимо ли включать оба источника питания одновременно, или устройство может работать при подаче питания только на ядро или только на интерфейс входов/выходов?
2. Технология производства микросхем и защита от электростатического разряда (ESD): Транзисторы, создаваемые в процессе производства ИС, должны не только выдерживать, но и управлять сигналами высокого напряжения. Создание высоковольтных транзисторов увеличивает себестоимость продукции, т. к. для обеспечения устойчивости к высокому напряжению требуются дополнительные меры. Разработка же устройства со стандартными транзисторами потребует дополнительного схемотехнического усложнения. Кроме того, драйверы входов/выходов должны обеспечивать защиту устройства от электростатического разряда (ESD). В большинстве современных разработок допустимое напряжение на входе ограничено величиной напряжения питания плюс прямое падение напряжения на диоде (0.7 В). Защита от более высокого напряжения требует создания большего количества диодных переходов.
3. Встроенные средства генерации высокого напряжения. Транзисторы с каналами p-типа (PMOS) должны помещаться в область на кристалле, которая подключена к самому высокому имеющемуся на кристалле напряжению, чтобы предотвратить открывание диодного перехода и протекание избыточных токов. Это высокое напряжение может быть или генерировано на кристалле при помощи зарядного насоса, или поступать от внешнего источника. Это требование может сделать осуществление проекта более сложным, т. к. невозможно эффективно использовать зарядные насосы для генерирования высокого напряжения и в то же время обеспечить малый ток потребления в режиме ожидания.
4. Площадь кристалла: Размер кристалла играет решающую роль при уменьшении себестоимости и повышении эффективности. Обеспечение устойчивости и совместимости схемы может потребовать дополнительной площади для драйверов входов/выходов, чтобы получить необходимые параметры.
5. Тестирование: Т. к. сердечник и драйверы входов/выходов могут работать при различных напряжениях питания, тестирование устройства по всем возможным комбинациям напряжений может быть затруднительным, что отражается на общей стоимости продукции.
Интерфейсы между системами с напряжениями питания 3.3 В и 2.5 В
Серия Fairchild 74VCX164245 — это низковольтные 16-битные преобразователи/ приемопередатчики с двойным питанием и с тремя состояниями на выходе. Упрощенная структурная схема показана на рис. 10.9.
Эти устройства используют низковольтный стандарт VCX, который обсуждался ранее. Схема выходного драйвера питается от шины питания VDDB, обеспечивая устойчивость и совместимость выхода с напряжением VDDB. Входная схема питается от шины питания VDDA, и входная логическая схема регулирует уровни порогов на входе логики в соответствии с конкретным значением VDDA. На рис. 10.10 показаны входные пороги для стандарта VCX при напряжении питания 3.3 В, 2.5 В и 1.8 В. Обратите внимание, что входное напряжение 3.3 В допустимо при любом из трех напряжений питания.
Эти устройства рассеивают около 2 мВт на каждый вход/выход и выпускаются в корпусах TSSOP с 48 выводами и с напряжением питания 2.5 В. Задержка распространения составляет около 3.2 нc.
На рис. 10.11 показано два возможных варианта сопряжения 3.3-вольтовой и 2.5-вольтовой логики. На верхнем рисунке (А) показано прямое включение. Эта схема будет работать, если 2.5-вольтовая ИС обладает устойчивостью к 3.3 В на входе. Если 2.5-вольтовая ИС не является устойчивой к 3.3 В, то может использоваться VCX-преобразователь, как показано на рис. 10.11 (В).
На рис. 10.12 А показано прямое соединение между ИС с напряжениями питания 2.5 В и 3.3 В. Чтобы данная схема работала, выход 2.5-вольтовой микросхемы должен обеспечивать хотя бы 2 В. При отсутствии нагрузки на выходе 2.5-вольтовой микросхемы, вход 3.3-вольтовой ИС соединяется напрямую с шиной +2.5 В через внутреннее сопротивление PMOS транзистора RON. Таким образом обеспечивается запас помехоустойчивости 0.5 В при номинальном напряжении питания 2.5 В. Однако ввиду допустимого 10 %-ного разброса напряжение на шине 2.5 В может упасть до минимума в 2.25 В, и запас помехоустойчивости уменьшается до 0.25 В. Эта схема может тем не менее работать при сравнительно "тихом" окружении, но работать на пределе, если в напряжении источника питания присутствует шум.
Добавление "подтягивающего" резистора сопротивлением 1.6 кОм, как показано на рис. 10.12 В, гарантирует, что напряжение на выходе 2.5-вольтовой ИС не упадет ниже 2.5 В при наличии тока на входе 3.3-вольтового устройства, но запас помехоустойчивости все таки уменьшится при напряжении питания 2.25 В. При скважности 50 % данный резистор добавляет примерно 3.4 мВт рассеиваемой мощности на каждый выход.
Более надежный интерфейс между 2.5-вольтовой и 3.3-вольтовой системами показан на рис. 10.12 С; здесь используется преобразователь VCX. С его помощью решаются все проблемы, связанные с запасом помехоустойчивости, имеющиеся в схемах (А) и (В), и он потребляет около 2 мВт на каждый вход.
Заземление в системах со смешанными сигналами
Уолт Кестер, Джеймс Брайант, Майк Бирн
Современные системы обработки данных обычно содержат в себе устройства со смешанными сигналами (mixed-signal devices), такие как аналого-цифровые преобразователи (АЦП), цифро-аналоговые преобразователи (ЦАП), а также быстродействующие цифровые сигнальные процессоры (DSP). Обработка аналоговых сигналов требует большого динамического диапазона, поэтому возрастает роль